Answer:
In physics, the kinetic energy (KE) of an object is the energy that it possesses due to its motion
In classical mechanics, the gravitational potential at a location is equal to the work (energy transferred) per unit mass that would be needed to move an object to that location from a fixed reference location. It is analogous to the electric potential with mass playing the role of charge. The reference location, where the potential is zero, is by convention infinitely far away from any mass, resulting in a negative potential at any finite distance.
In mathematics, the gravitational potential is also known as the Newtonian potential and is fundamental in the study of potential theory. It may also be used for solving the electrostatic and magnetostatic fields generated by uniformly charged or polarized ellipsoidal bodies
Answer:
H = 3.9 m
Explanation:
mass (m) = 48 kg
initial velocity (initial speed) (U) = 8.9 m/s
final velocity (V) = 1.6 m/s
acceleration due to gravity (g) = 9.8 m/s^{2}
find the height she raised her self to as she crosses the bar (H)
from energy conservation, the change in kinetic energy = change in potential energy
0.5m(V^{2} - [test]U^{2}[/tex]) = mg(H-h)
where h = initial height = 0 since she was on the ground
the equation becomes
0.5m(V^{2} - [test]U^{2}[/tex]) = mgH
0.5 x 48 x (1.6^{2} - [test]8.9^{2}[/tex]) = 48 x 9.8 x H
-1839.6 = 470.4 H (the negative sign indicates a decrease in kinetic energy so we would not be making use of it further)
H = 3.9 m
Answer:
18.4615385 amps
Explanation:
The voltage V in volts (V) is equal to the current I in amps (A) times the resistance R in ohms (Ω):
Answer:
1) Newton's first law of motion states an object will remain at rest or in uniform will be in uniform motion in a straight line unless a force acts on it
2) Newton's second law states the acceleration of an object is directly proportional to the applied force acting on an object and inversely proportional to the mass of the object
Explanation:
1) With Newton's first law, we are able arrange things within a space and schedule meetings in time knowing that they will remain in place unless an external force changes their positions
2) An example of Newton's second law of motion is that small objects such as a ball are easily accelerated and can be given appreciable acceleration for flight by single, one time contact (such as kicking the ball) while larger objects such as a rock require sustained force application to change their location.