Answer:
The graph in the attached figure
Step-by-step explanation:
Let
x ----> the number of open acres
y ----> the number of developed acres
we know that
-----> inequality A
The solution of the inequality A is the shaded area above the solid line 
-----> inequality B
The solution of the inequality B is the shaded area below the solid line 
so
The graph in the attached figure
so we have three points, A, B and C, if indeed AC is the diameter of the circle, then half the distance of AC is its radius, and the midpoint of AC is the center of the circle, morever, since B is also on the circle, the distance from B to the center must be the same radius distance.
in short, half the distance of AC must be equals to the distance of B to the midpoint of AC, if indeed AC is the diameter.

now, let's check the distance from say A to the center, and check the distance of B to the center, if it's indeed the center, they'll be the same and thus AC its diameter.
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ A(\stackrel{x_1}{7}~,~\stackrel{y_1}{4})\qquad M(\stackrel{x_2}{\frac{19}{2}}~,~\stackrel{y_2}{\frac{7}{2}})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ AM=\sqrt{\left( \frac{19}{2}-7 \right)^2+\left( \frac{7}{2}-4 \right)^2} \\\\\\ AM=\sqrt{\left( \frac{5}{2}\right)^2+\left( -\frac{1}{2} \right)^2}\implies \boxed{AM\approx 2.549509756796392} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20A%28%5Cstackrel%7Bx_1%7D%7B7%7D~%2C~%5Cstackrel%7By_1%7D%7B4%7D%29%5Cqquad%20M%28%5Cstackrel%7Bx_2%7D%7B%5Cfrac%7B19%7D%7B2%7D%7D~%2C~%5Cstackrel%7By_2%7D%7B%5Cfrac%7B7%7D%7B2%7D%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20AM%3D%5Csqrt%7B%5Cleft%28%20%5Cfrac%7B19%7D%7B2%7D-7%20%5Cright%29%5E2%2B%5Cleft%28%20%5Cfrac%7B7%7D%7B2%7D-4%20%5Cright%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20AM%3D%5Csqrt%7B%5Cleft%28%20%5Cfrac%7B5%7D%7B2%7D%5Cright%29%5E2%2B%5Cleft%28%20-%5Cfrac%7B1%7D%7B2%7D%20%5Cright%29%5E2%7D%5Cimplies%20%5Cboxed%7BAM%5Capprox%202.549509756796392%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

Answer:
The length of AC is;
C. 50
Step-by-step explanation:
By the midpoint of a triangle theorem, we have that a segment that spans across and intersects with the midpoints of two sides of a triangle is equal to half the length of the third side and parallel to the length of the third side
The given parameters are;
The midpoints of ΔACE are B, D, and F
The length of EC = 44
The length of DF = 25
Therefore, we have;
Given that DF is a midsegment of triangle ΔACE, then DF ║ AC and
the length of DF = (1/2) × AC the length of AC
∴ The length of AC = 2 × The length of DF
The length of DF = 25
∴ The length of AC = 2 × 25 = 50
The length of AC = 50
Answer:
0.1527
Step-by-step explanation:
Standard Deviation = √p × q/n
Reynolds: 63%
Bachmann: 37%
n = 100
Standard Deviation = √0.63 × 0.37/100
= √(0.02331)
= 0.1526761278
≈ 0.1527
The answer is A. .3 because do find the percent from a decimal you need to move the decimal point two to the right, so in this case it will be 30 or 30%