1. B, dependent variable
2. C, the dependent variable is represented in the 2nd column of a table.
8.
A. Domain: { 0, -3, 4, 5 }
B. Range: { 0, 1, 6, 7, 8 }
C. No, this is not a function because the x-value of 4 (domain) has two corresponding y-values of 6 and 8 (range)
5p-14=8p+19
8p-5p = -3p
-3p-14=18
14+18 = 33
33/-3=-11
He’s 41 now
just add 5 to his age
First, you must know these formula d(e^f(x) = f'(x)e^x dx, e^a+b=e^a.e^b, and d(sinx) = cosxdx, secx = 1/ cosx
(secx)dy/dx=e^(y+sinx), implies <span>dy/dx=cosx .e^(y+sinx), and then
</span>dy=cosx .e^(y+sinx).dx, integdy=integ(cosx .e^(y+sinx).dx, equivalent of
integdy=integ(cosx .e^y.e^sinx)dx, integdy=e^y.integ.(cosx e^sinx)dx, but we know that d(e^sinx) =cosx e^sinx dx,
so integ.d(e^sinx) =integ.cosx e^sinx dx,
and e^sinx + C=integ.cosx e^sinxdx
finally, integdy=e^y.integ.(cosx e^sinx)dx=e^2. (e^sinx) +C
the answer is
y = e^2. (e^sinx) +C, you can check this answer to calculate dy/dx
Answer: A, C, and E
Step-by-step explanation: