1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mario62 [17]
3 years ago
7

Evaluate the following function for f(-3),

Mathematics
1 answer:
TEA [102]3 years ago
8 0

Answer: −3f

Step-by-step explanation:

You might be interested in
What are the coordinates of the midpoint of CD¯¯¯¯¯ where C(2, −6) and D(4, 10)?
Aleks [24]
You can use the midpoint formulae as I have in the picture below

8 0
3 years ago
Read 2 more answers
What is the missing polynomial?
german

Answer:

C. 40-4x-12x^2

Step-by-step explanation:

very simple

? – (20 – 4x – 5x2) = 20 – 7x2, so ?  = 20 – 7x2 + (20 – 4x – 5x2)

?  = 20 – 7x2 + (20 – 4x – 5x2)=20-7x²+20-4x-5x²=40-12x²-4x

7 0
3 years ago
Read 2 more answers
A rectangle has a length of 20 inches. if its perimeter is 64 inches, what is the area?​
zzz [600]

Answer:

\boxed{ \bold{ \huge{ \boxed{  \sf 240 \:  {inches}^{2} }}}}

Step-by-step explanation:

Given,

Length of a rectangle = 20 inches

Perimeter of a rectangle = 64 inches

Area of a rectangle = ?

Let width of a rectangle be ' w ' .

<u>Fi</u><u>rst</u><u>,</u><u> </u><u>finding </u><u>the</u><u> </u><u>width</u><u> </u><u>of</u><u> </u><u>a</u><u> </u><u>rectangle</u>

\boxed{ \sf{perimeter = 2(l + w)}}

plug the values

⇒\sf{64 = 2(20 + w)}

Distribute 2 through the parentheses

⇒\sf{64 = 40 + 2w}

Swap the sides of the equation

⇒\sf{40 + 2w = 64}

Move 2w to right hand side and change it's sign

⇒\sf{2w = 64 - 40}

Subtract 40 from 64

⇒\sf{2w = 24}

Divide both sides of the equation by 2

⇒\sf{ \frac{2w}{2}  =  \frac{24}{2} }

Calculate

⇒\sf{w = 12 \: inches}

Width of a rectangle ( w ) = 12 inches

<u>Now</u><u>,</u><u> </u><u>finding</u><u> </u><u>the</u><u> </u><u>area</u><u> </u><u>of </u><u>a</u><u> </u><u>rectangle</u><u> </u><u>having</u><u> </u><u>length</u><u> </u><u>of</u><u> </u><u>2</u><u>0</u><u> </u><u>inches</u><u> </u><u>and </u><u>width </u><u>of</u><u> </u><u>1</u><u>2</u><u> </u><u>inches</u>

\boxed{ \sf{area \: of \: rectangle = length \:  \times  \: \: width}}

plug the values

⇒\sf{area \: of \: rectangle =20 \times  12 }

Multiply the numbers : 20 and 12

⇒\sf{area \: of \: rectangle = 240 \:  {inches}^{2} }

Hence, Area of a rectangle = 240 inches²

Hope I helped !

Best regards!

7 0
3 years ago
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
Please help really confused
marysya [2.9K]
X intercept: (- 1/7, 0)
Y intercept: (0, 1/4)
3 0
3 years ago
Other questions:
  • Why 8 divide 16 equal 0.5
    7·2 answers
  • What's 4 divided by 142.09 in long division
    12·2 answers
  • Solve the logarithmic equation. When necessary, round answer to the nearest hundredth.
    10·2 answers
  • 100 - 10x = 40 *<br><br> a X = 6<br> b X = 7<br> c X = -6<br> d X = 5
    12·2 answers
  • Draw the graph of the equation: 2(x–y)+3y=4
    9·1 answer
  • What is this problem
    8·2 answers
  • What is the rate of change for y = 29/5 x
    13·1 answer
  • If f(x) = 5x + 2x and g(x) = 3x - 6, find (f+g)(x).
    6·1 answer
  • A bicycle has a listed price of $765.95 before tax. If the sales tax rate is 9.5%, find the total cost of the bicycle with sales
    8·2 answers
  • What is the slope of line m?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!