Answer: Farmers use selective breeding for desirable traits. This is considered a type of genetic manipulation.
Explanation:
Mitochondria: totally real cell organelles that convert sugars, fats and oxygen into usable energy for cells. Midi-chlorians: completely made-up and widely derided microscopic life-forms that give Jedi warriors their ability to use the Force in the "Star Wars" movies.
Answer: Feeding behaviors, trophic levels, cell wall composition, and their organelles distinguish fungi from plants.
Explanation:
While plants and fungi are both eukaryotes, they differ in terms of feeding behaviors, trophic levels, cell wall composition, and their organelles.
- Cell walls: both are non-chain polysaccharides (sugars) that function as structural support; yet fungal cell walls are composed of chitin while plant cell walls are made up of cellulose
- Feeding: fungi secrete compounds that digest their food sources before they can take in nutrients and they store food as <em>glycogen; </em>while plants do not require a means of pre-digesting food and store their food as <em>starch.</em>
- Organelles: plant cells contain <em>chloroplasts</em>, small green structures with chlorophyll that causes their characteristic coloration. Unlike plants, fungi do not photosynthesize to make their own food or contain chloroplasts.
- Trophic level: are strictly <em>heterotrophs or decomposers, </em>depending on other organisms for survival. Their chloroplasts enable them to carry out photosynthesis, thus they are <em>autotrophs or producers. </em>
Answer: 3 stages- glycolysis, pyruvate oxidation, the citric acid or Krebs cycle, and oxidative phosphorylation. In glycolysis, the beginning process of all types of cellular respiration, two molecules of ATP are used to attach 2 phosphate groups to a glucose molecule, which is broken down into 2 separate 3-carbon PGAL molecules. PGAL releases electrons and hydrogen ions to the electron carrier molecule NADP+. A carboxyl group is removed from pyruvate and released as carbon dioxide. The two-carbon molecule from the first step is oxidized, and NAD+ accepts the electrons to form NADH. The oxidized two-carbon molecule, an acetyl group, is attached to Coenzyme A to form acetyl CoA. The citric acid cycle, where acetyl CoA is modified in the mitochondria to produce energy precursors in preparation for the next step. Oxidative phosphorylation, the process where electron transport from the energy precursors from the citric acid cycle (step 3) leads to the phosphorylation of ADP, producing ATP. The space between the inner and outer membrane is called the intermembrane space. The space enclosed by the inner membrane is called the matrix. The second stage of cellular respiration, the Krebs cycle, takes place in the matrix. The third stage, electron transport, takes place on the inner membrane.
Explanation: