Let's assume
length of rectangle is x
width of rectangle is y
now, we can draw rectangle
now, we can find fencing length
![F=2x+3y](https://tex.z-dn.net/?f=%20F%3D2x%2B3y%20)
we are given
total fencing length=400
so, we can set them equal
![400=2x+3y](https://tex.z-dn.net/?f=%20400%3D2x%2B3y%20)
now, we can solve for y
![3y=400-2x](https://tex.z-dn.net/?f=%203y%3D400-2x%20)
![y=\frac{400}{3} -\frac{2x}{3}](https://tex.z-dn.net/?f=%20y%3D%5Cfrac%7B400%7D%7B3%7D%20-%5Cfrac%7B2x%7D%7B3%7D%20%20)
now, we can find area
Area=length*width
![A=xy](https://tex.z-dn.net/?f=%20A%3Dxy%20)
we can plug back y
![A=x(\frac{400}{3} -\frac{2x}{3})](https://tex.z-dn.net/?f=%20A%3Dx%28%5Cfrac%7B400%7D%7B3%7D%20-%5Cfrac%7B2x%7D%7B3%7D%29%20)
![A=\frac{400}{3}x -\frac{2x^2}{3}](https://tex.z-dn.net/?f=%20A%3D%5Cfrac%7B400%7D%7B3%7Dx%20-%5Cfrac%7B2x%5E2%7D%7B3%7D%20)
we have to maximise area
For maximising area , firstly we find derivative of area
and then we can set derivative =0 and then we solve for x
so, firstly we will find derivative
![A'=\frac{400}{3}*1 -\frac{2*2x}{3}](https://tex.z-dn.net/?f=%20A%27%3D%5Cfrac%7B400%7D%7B3%7D%2A1%20-%5Cfrac%7B2%2A2x%7D%7B3%7D%20)
now, we can set it to 0
and then we solve for x
![0=\frac{400}{3}*1 -\frac{2*2x}{3}](https://tex.z-dn.net/?f=%200%3D%5Cfrac%7B400%7D%7B3%7D%2A1%20-%5Cfrac%7B2%2A2x%7D%7B3%7D%20)
![400-4x=0](https://tex.z-dn.net/?f=%20400-4x%3D0%20)
![x=100](https://tex.z-dn.net/?f=%20x%3D100%20)
now, we can find y
![y=\frac{400}{3} -\frac{2x}{3}](https://tex.z-dn.net/?f=%20y%3D%5Cfrac%7B400%7D%7B3%7D%20-%5Cfrac%7B2x%7D%7B3%7D%20%20)
![y=\frac{400}{3} -\frac{2*100}{3}](https://tex.z-dn.net/?f=%20y%3D%5Cfrac%7B400%7D%7B3%7D%20-%5Cfrac%7B2%2A100%7D%7B3%7D%20%20)
![y=\frac{200}{3}](https://tex.z-dn.net/?f=%20y%3D%5Cfrac%7B200%7D%7B3%7D%20%20)
so, dimensions are
length is 100 feet
width is
feet.............Answer