SBP is a serious complication in patients with cirrhosis with high mortality rates (20–40%).
Patients at risk of developing SBP can be categorized in three groups firstly patients with active variceal bleeding patients with ascitic fluid protein <10 g/dl secondly those with a prior episode of SBP.
The most common bacteria causing SBP are gram-negative Escherichia coli and Klebsiella pneumoniae and gram-positive Streptococcus pneumoniae usually only a single organism is involved. Spontaneous bacterial peritonitis (SBP), an infection of ascitic fluid without a definitive intra-abdominal source that can be surgically treated is a common complication in patients with cirrhosis and ascites. Spontaneous bacterial peritonitis (SBP),is treated with a 10 to 14 day course of antibiotics .
To learn more about Spontaneous bacterial peritonitis (SBP) , here
brainly.com/question/13258891
#SPJ4
Answer:
Nowadays energy generation heavily relies on fossil fuels causing environmental challenges. The global biofuels supply has increased by a factor of 8% since 2010, but only comprises 4% of the world’s transport fuels in 2015. The development of next generation of biofuel becomes increasingly important due to the depletion of fossil fuels and in the meantime to overcome challenges for current biofuels production – high cost and low efficiency. The biological production of lipid droplets in oleaginous microorganisms like microalgae, yeast, fungi, and bacteria becomes a promising path to the next generation of biofuels.
The lipid droplet (LD) is a cellular organelle that consists of a neutral lipid, mainly of triacylglycerols (TAGs) and cholesteryl esters, cored with a monolayer-phospholipid membrane and associated proteins. Lipid droplets widely exist in both prokaryotic and eukaryotic cells, could be collected and extracted for biofuel manufacturing. However, this technology is now limited in lab research. Methods to improve the lipid droplet production in oleaginous microorganisms, biomass pretreatment, lipid droplet extraction, industrial scalability are still under development. The experience of liposome manufacturing provides us a solid ground for lipid droplet studies and helps our clients move to a further step of new biofuel development.
Explanation:
https://www.creative-biostructure.com/Lipid-Droplets-Biofuel-Supply-626.htm
Answer and explanation:
The meninges
There are actually 3 parts—dura mater, arachnoid, and pia mater.
The brain is soft and mushy, and without structural support it would not be able to maintain its normal shape. In fact, a brain taken out of the head and not properly suspended (e.g., in saline solution) can tear simply due to the effects of gravity. While the bone of the skull and spine provide most of the safeguarding and structural support for the central nervous system (CNS), alone it isn't quite enough to fully protect the CNS. The meninges help to anchor the CNS in place to keep, for example, the brain from moving around within the skull. They also contain cerebrospinal fluid (CSF), which acts as a cushion for the brain and provides a solution in which the brain is suspended, allowing it to preserve its shape.
The outermost layer of the meninges is the dura mater, which literally means "hard mother." The dura is thick and tough; one side of it attaches to the skull and the other adheres to the next meningeal layer, the arachnoid mater. The dura provides the brain and spinal cord with an extra protective layer, helps to keep the CNS from being jostled around by fastening it to the skull or vertebral column, and supplies a complex system of veinous drainage through which blood can leave the brain.
The arachnoid gets its name because it has the consistency and appearance of a spider web. It is much less substantial than the dura, and stretches like a cobweb between the dura and pia mater. By connecting the pia to the dura, the arachnoid helps to keep the brain in place in the skull. Between the arachnoid and the pia there is also an area known as the subarachnoid space, which is filled with CSF. The arachnoid serves as an additional barrier to isolate the CNS from the rest of the body, acting in a manner similar to the blood-brain barrier by keeping fluids, toxins, etc. out of the brain.