Answer: potassium iodide is the basic test for starch,and the positive test is blue-black coloration, any other test substance which is not starch will give a negative results.
Explanation:
Starch is an example of polysaccharide and since the standard test for it is potassium iodide solution, it gives a positive test.
Diasaccharides e.g maltose are reducing sugars.their standard test is BENEDICT test .
Therefore, in the hydrolysis; starch should give a positve test, while Diasaccharides should give negative rest.
Answer: Structural Isomers
Explanation:
The compounds having similar molecular formula but different arrangement of atoms or groups in space are called isomers and the phenomenon is called as isomerism.
Isomers are of two types: structural isomers and stereo isomers.
Structural isomers are isomers in which molecules with the same molecular formula have different bonding patterns.
Stereoisomers are isomers in which molecules have the same molecular formula and sequence of bonded atoms but differ in the three-dimensional orientations of their atoms in space.
Thus when molecules have the same number of each element but those atoms are arranged differently they are known as Structural isomers.
I think it is c but I’m not sure
Answer:... I'm sorry.. I think you're missing something
Explanation:
2.0 L
The key to any dilution calculation is the dilution factor
The dilution factor essentially tells you how concentrated the stock solution was compared with the diluted solution.
In your case, the dilution must take you from a concentrated hydrochloric acid solution of 18.5 M to a diluted solution of 1.5 M, so the dilution factor must be equal to
DF=18.5M1.5M=12.333
So, in order to decrease the concentration of the stock solution by a factor of 12.333, you must increase its volume by a factor of 12.333by adding water.
The volume of the stock solution needed for this dilution will be
DF=VdilutedVstock⇒Vstock=VdilutedDF
Plug in your values to find
Vstock=25.0 L12.333=2.0 L−−−−−
The answer is rounded to two sig figs, the number of significant figures you have for the concentration od the diluted solution.
So, to make 25.0 L of 1.5 M hydrochloric acid solution, take 2.0 L of 18.5 M hydrochloric acid solution and dilute it to a final volume of 25.0 L.
IMPORTANT NOTE! Do not forget that you must always add concentrated acid to water and not the other way around!
In this case, you're working with very concentrated hydrochloric acid, so it would be best to keep the stock solution and the water needed for the dilution in an ice bath before the dilution.
Also, it would be best to perform the dilution in several steps using smaller doses of stock solution. Don't forget to stir as you're adding the acid!
So, to dilute your solution, take several steps to add the concentrated acid solution to enough water to ensure that the final is as close to 25.0 L as possible. If you're still a couple of milliliters short of the target volume, finish the dilution by adding water.
Always remember
Water to concentrated acid →.NO!
Concentrated acid to water →.YES!