Answer:
The centripetal force causing the car to turn in a circular path is due to friction between the tires and the road. A minimum coefficient of friction is needed, or the car will move in a larger-radius curve and leave the roadway.
Explanation:
Answer:
10.000 grams
Explanation:
For the first law of thermodynamics, the energy must be conserved, that means that the energy in form of heat (Q) must be equal to the sum of work (W) and internal energy(ΔU) :
Q = W + ΔU
ΔU depends on the temperature and W in the variation of pressure and volume. Q depends on the temperature, but also the mass. So, there is the same temperature, ΔU is equal for both reaction, if there is no work done, the heat must be equal for both of them. So the mass such be the same.
Answer:
solid
Explanation:
in the solid state the material will has a fixed shape and volume whatever the container that contains it
where in liquid the shape will be different depending on the container
and in gas state the shape and volume are not definite
Answer:
121 g/mol
Explanation:
To find the molar mass, you first need to calculate the number of moles. For this, you need to use the Ideal Gas Law. The equation looks like this:
PV = nRT
In this equation,
-----> P = pressure (atm)
-----> V = volume (L)
-----> n = moles
-----> R = constant (0.0821 L*atm/mol*K)
-----> T = temperature (K)
Because density is comparing the mass per 1 liter, I am assuming that the system has a volume of 1 L. Before you can plug the given values into the equation, you first need to convert Celsius to Kelvin.
P = 1.00 atm R = 0.0821 L*atm/mol*K
V = 1.00 L T = 25.0. °C + 273.15 = 298.15 K
n = ? moles
PV = nRT
(1.00 atm)(1.00L) = n(0.0821 L*atm/mol*K)(298.15 K)
1.00 = n(0.0821 L*atm/mol*K)(298.15 K)
1.00 = (24.478115)n
0.0409 = n
Now, we need to find the molar mass using the number of moles per liter (calculated) and the density.
0.0409 moles ? grams 4.95 grams
---------------------- x ------------------ = ------------------
1 L 1 mole 1 L
? g/mol = 121 g/mol
**note: I am not 100% confident on this answer