1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Harlamova29_29 [7]
4 years ago
8

Write 1 2568/10,000 in a decimal notation

Mathematics
2 answers:
BartSMP [9]4 years ago
5 0
12568/10000

The 10000  has four zeros, write 12568 as 12568.0, simply move the decimal point four places to the left, since 10000 has four zeros.

You have 1.2568 as the answer.


sveta [45]4 years ago
5 0
1.2568
It's simple....just follow these steps;
1. See the denominator(the number you are dividing with) which in this case is 10,000.
2. Now, since the denominator is a number that has "1" on the unit place (more examples of such numbers are 10, 100, 1000, 10000 etc.), follow the followig steps.
NOTE:- Do not follow these steps if such is not the case.
3. Count the number of zeros in the denominator.
4. Now, in this case we have 4 zeros, so start counting the digits in the numerator form right.
5. Put the decimal after number of digits equal to the counted zeros.
hope it helps... =)
You might be interested in
10 tan = ___pounds?
tensa zangetsu [6.8K]
(I'm guessing you mean ton)
10 ton = 20,000 pounds
8 0
3 years ago
Read 2 more answers
Write the following fractions in order of size.
11Alexandr11 [23.1K]
Smallest 1/4 5/12 1/2 2/3 3/4 biggest
5 0
3 years ago
Read 2 more answers
Show your work plz.
iVinArrow [24]
C bc the x is where the right angle is and the 2 sides of a right angle is going to be equal
4 0
3 years ago
Which of the following are the coordinates of a rectangle with a length of 4 units and a width of 3 units in the coordinate plan
jekas [21]
A!!
-2 and 2 are the x values of the coordinates which are 4 units apart, being 4 units in LENGTH
1 and -2 are 3 units apart and them being in the y part of the coordinate it’s 3 units wide
5 0
3 years ago
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
4 years ago
Read 2 more answers
Other questions:
  • Divide 169 mi in the ratio 5 : 8.
    8·1 answer
  • What is 2\3y plus y minus 4 equals 31
    14·2 answers
  • 3/5b-2+7b-12-2/5b+14 ​
    13·1 answer
  • IF i have 5 flu shots and six people in a business
    6·1 answer
  • A circle is inside a square. The radius of the circle is decreasing at a rate of 3 meters per hour and the sides of the square a
    7·1 answer
  • The number of points scored by Reuben in the first five basketball games of a season are shown below.
    10·1 answer
  • (2, 4) and (5,2).<br> Find the slope :)
    11·1 answer
  • Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s).
    5·1 answer
  • What is the surface area of this right square pyramid?
    11·1 answer
  • Find the surface area.<br> 7 in.<br> 7 in.<br> 7 in.<br> please help
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!