The amount of energy in kilocalories released from 49 g of glucose given the data is -4.4 Kcal
How to determine the mole of glucose
Mass of glucose = 49 g
Molar mass of glucose = 180.2 g/mol
Mole of glucose = ?
Mole = mass / molar mass
Mole of glucose = 49 / 180.2
Mole of glucose = 0.272 mole
How to determine the energy released
C₆H₁₂O₆ →2C₂H₆O + 2CO₂ ΔH = -16 kcal/mol
From the balanced equation above,
1 mole of glucose released -16 kcal of energy
Therefore,
0.272 mole of glucose will release = 0.272 × -16 = -4.4 Kcal
Thus, -4.4 Kcal were released from the reaction
Learn more about stoichiometry:
brainly.com/question/14735801
#SPJ1
Batteries <span>stop working due to the chemical compound between two poles running out. Also part of metal used for negative pole solved every time battery was used.</span>
Answer:
The number of
atoms in the unit cell is 2
Explanation:
Answer:

Explanation:
Hello,
In this case, for the calculation of the half-life for the mentioned reaction we first must realize that considering the units of the rate constant and the form of the rate law, it is a second-order reaction, therefore, the half-life expression is:
![t_{1/2}=\frac{1}{k[A]_0}](https://tex.z-dn.net/?f=t_%7B1%2F2%7D%3D%5Cfrac%7B1%7D%7Bk%5BA%5D_0%7D)
Therefore, we obtain:

Regards.