Answer:
Explanation:
Molarity is found by dividing the moles of solute by liters of solution.
We are given grams of a compound and milliliters of solution, so we must make 2 conversions.
1. Gram to Moles
We must use the molar mass. First, use the Periodic Table to find the molar masses of the individual elements.
- C: 12.011 g/mol
- H: 1.008 g/mol
- O: 15.999 g/mol
Next, look at the formula and note the subscripts. This tells us the number of atoms in 1 molecule. We multiply the molar mass of each element by its subscript.
6(12.011)+12(1.008)+6(15.999)=180.156 g/mol
Use this number as a ratio.
Multiply by the given number of grams.
Flip the fraction and divide.
2. Milliliters to Liters
There are 1000 milliliters in 1 liter.
Multiply by 2500 mL.
3. Calculate Molarity
Finally, divide the moles by the liters.
The original measurement has 2 significant figures, so our answer must have the same. That is the hundredth place and the 3 tells us to leave the 7.
1 mole per liter is also equal to 1 M.
Boyle's law p1V1=p2V2
p2=(p1V1)/V2
p2=(205*10^3 Pa * 4*10^-3 m^3 ) / (12*10^-3 m^3)
p2= 68333 Pa
Answer:
I honestly dont know but its cool problably from water fill or from the waves going to much
Explanation:
The circulatory system picks up nitrogenous wastes from the cells and delivers them to the kidneys. The kidneys remove these wastes from the blood and concentrates them into the urine that is eliminated from the body.
Answer:
Option C. 4.03 g
Explanation:
Firstly we analyse data.
12 % by mass, is a sort of concentration. It indicates that in 100 g of SOLUTION, we have 12 g of SOLUTE.
Density is the data that indicates grams of solution in volume of solution.
We need to determine, the volume of solution for the concentration
Density = mass / volume
1.05 g/mL = 100 g / volume
Volume = 100 g / 1.05 g/mL → 95.24 mL
Therefore our 12 g of solute are contained in 95.24 mL
Let's finish this by a rule of three.
95.24 mL contain 12 g of sucrose
Our sample of 32 mL may contain ( 32 . 12) / 95.24 = 4.03 g