Answer:
In a chemical reaction, only the atoms present in the reactants can end up in the products. No new atoms are created, and no atoms are destroyed. In a chemical reaction, reactants contact each other, bonds between atoms in the reactants are broken, and atoms rearrange and form new bonds to make the products.
Explanation:
please mark as brainliest if I helped you
Answer:
29.2 L
Explanation:
Given data

We can find the volume of the gas (V) of the using the ideal gas equation.
P × V = n × R × T
V = n × R × T / P
V = 1 mol × (0.0821 atm.L/mol.K) × 293 K / 0.824 atm
V = 29.2 L
Answer:
The pH of the final solution is 7.15
Explanation:
50 mL of 2.0 M of
and 25 mL of 2.0 M of
were mixed to make a solution
Final volume of the solution after dilution = 200 mL
Final concentration of ![K_2HPO_4, [K_2HPO_4] = \frac{50 mL\times 2 M}{200 mL} = 0.5 M](https://tex.z-dn.net/?f=K_2HPO_4%2C%20%5BK_2HPO_4%5D%20%3D%20%5Cfrac%7B50%20mL%5Ctimes%202%20M%7D%7B200%20mL%7D%20%3D%200.5%20M)
Final concentration of![KH_2PO_4, [KH_2PO_4] = \frac{25 mL\times 2 M}{200 mL} = 0.25 M](https://tex.z-dn.net/?f=KH_2PO_4%2C%20%5BKH_2PO_4%5D%20%3D%20%5Cfrac%7B25%20mL%5Ctimes%202%20M%7D%7B200%20mL%7D%20%3D%200.25%20M)
We use Hasselbach- Henderson equation:
![pH = pK_a+ log \frac{[salt]}{[acid]}pka of KH_2PO_4 = 6.85](https://tex.z-dn.net/?f=pH%20%3D%20pK_a%2B%20log%20%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7Dpka%20of%20KH_2PO_4%20%3D%206.85)
Substituting the values:

Therfore, the pH of the final solution is 7.15
We can solve this problem using the long hand solution, wherein we 1 by 1 analyze the different equilibrium reactions or by simply using the Henderson Hasselbach equation. The equation is
pH = -log(pKa) + log (salt/acid)
since the acid and the salt have the same concentration, the log (salt/acid) term is equal to zero.
thus
pH = -log(1.73*10-5)
pH = 4.76
please be careful with the negative sign