1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vekshin1
3 years ago
7

Calculate 2165 minutes to hours

Mathematics
2 answers:
Scilla [17]3 years ago
5 0

Answer:

36.0833 hours.

Step-by-step explanation:

This conversion of 2,165 minutes to hours has been calculated by multiplying 2,165 minutes by 0.0166 and the result is 36.0833 hours.

Svetach [21]3 years ago
4 0

Answer: 36.08 hrs

Step-by-step explanation: An hour is 60 minutes.

You might be interested in
12 one half times one nine
pshichka [43]

Answer:

1\frac{7}{18}  or one seven eighteenths

Step-by-step explanation:

we know that

12 one half times one nine is the same that multiply 12 one half by one nine

so

(12\frac{1}{2})(\frac{1}{9})

Convert mixed number to an improper fraction

12\frac{1}{2}=12+\frac{1}{2}=\frac{12*2+1}{2}=\frac{25}{2}

substitute

(\frac{25}{2})(\frac{1}{9})=\frac{25}{18}

Convert to mixed number

\frac{25}{18}=\frac{18}{18}+\frac{7}{18}=1\frac{7}{18}

therefore

12 one half times one nine is one seven eighteenths

6 0
3 years ago
Solve for x in the equation 2x^2+3x-7=x^2+5x+39
Shalnov [3]
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
8 0
2 years ago
Read 2 more answers
Write this as a fraction
Vladimir [108]

Answer:

\frac{17}{99}

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Solve for n: 3n + 2 – n = -4
Sav [38]
The value of x is -3, or x= -3
6 0
3 years ago
The grades on a geometry midterm at Springer are roughly symmetric with = 68 and o = 2.0.
snow_lady [41]

Answer:

Z = 0.5

please follow up q q uagh

8 0
3 years ago
Other questions:
  • Drag each expression or fraction to show whether it is equivalent to 98 , 89 or neither.
    10·2 answers
  • X(x – 9)=–2x+18<br> helpp
    6·1 answer
  • Solve photo question. Mathematics help. :)
    10·1 answer
  • MATH PROBLEM NEED ANSWER ASAP!!!
    11·1 answer
  • HELP!!<br> Which table is a probability distribution table?
    7·1 answer
  • A sample of 1500 people from a certain industrial community showed that 800 people suffered from a lung disease. A sample of 100
    15·1 answer
  • Find the value of x and y
    15·2 answers
  • What is the answer to <br> 2 3/4 divided by 3
    13·1 answer
  • Help pleaseee, I’ll give brainly!
    7·2 answers
  • Pls help ill kiss u
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!