Volume of a cube is a side length cubed
So 7*7*7
Answer is 343 centimeters
Answer:
R=-33
Step-by-step explanation:
Answer:
The unusual
values for this model are: 
Step-by-step explanation:
A binomial random variable
represents the number of successes obtained in a repetition of
Bernoulli-type trials with probability of success
. In this particular case,
, and
, therefore, the model is
. So, you have:









The unusual
values for this model are: 
Answer:
V'(t) = 
If we know the time, we can plug in the value for "t" in the above derivative and find how much water drained for the given point of t.
Step-by-step explanation:
Given:
V =
, where 0≤t≤40.
Here we have to find the derivative with respect to "t"
We have to use the chain rule to find the derivative.
V'(t) = 
V'(t) = 
When we simplify the above, we get
V'(t) = 
If we know the time, we can plug in the value for "t" and find how much water drained for the given point of t.
9514 1404 393
Answer:
Step-by-step explanation:
A graphing calculator answers these questions easily.
The ball achieves a maximum height of 40 ft, 1 second after it is thrown.
__
The equation is usefully put into vertex form, as the vertex is the answer to the questions asked.
h(t) = -16(t^2 -2t) +24
h(t) = -16(t^2 -2t +1) +24 +16 . . . . . . complete the square
h(t) = -16(t -1)^2 +40 . . . . . . . . . vertex form
Compare this to the vertex form:
f(x) = a(x -h)^2 +k . . . . . . vertex (h, k); vertical stretch factor 'a'
We see the vertex of our height equation is ...
(h, k) = (1, 40)
The ball reaches a maximum height of 40 feet at t = 1 second after it is thrown.