Answer:
100%
Explanation:
No matter how many factors are in the cross, if an 2 purebred (homozygous individuals) are crossed, (one dominant, one recessive) the dominant phenotype will always be displayed.
Imagine a cross with between two individuals true breeding for 6 traits. One shows all dominant genotypes, one shows all recessive genotypes. The only gametes those individuals can pass on will always produce heterozygotes.
AABBCCDDEEFFGG x aabbccddeeffgg
The first individual can only give ABCDEFG alleles. The second individual can only give abcdefg alleles. Therefore, all offspring will be AaBbCcDdEeFfGg, and will therefore express the dominant trait.
Solution
Cut open an onion.
Use forceps to peel a thin layer of epidermis from the inside.
Lay the layer of epidermis on a microscope slide.
Add a drop of iodine solution to the layer.
Carefully place a coverslip over the layer.
Observe it under a microscope to see onion cells.
Answer:
Stephen Stearns states that natural selection doesn't mean the survival of the fittest organisms, but rather this mechanism is illustrated by the selective reproduction of the fittest. Natural selection can be classified into distinct types, including directional, disruptive and stabilizing selection, which are in turn based on sexual selection. These types of selection are driven by different outcomes that have different dynamics.
Answer:
I am pretty sure you are asking for the correct words which for living is biotic and for non living it is Abiotic
Explanation:
Answer:
The correct answer would be - Characteristics can be lost in evolution.
Explanation:
The new evidence helps in developing a new hypothesis. In this case, new evidence proved that the Chondrichthyes diverged after the evolution of bone had started instead of before the evolution started. This process called atavism where an ancestral genetic trait reappears after having lost. This leads to loss of the traits in the evolution
This can take place by knocking the mutation out to overriding the gene by the old gene or overriding the new trait by the old trait during the evolution period.