Answer:
<em> 90% confidence interval for the number of seeds for the species</em>
(78.8073 ,83.3927)
Step-by-step explanation:
<u><em>Step(i)</em></u>:-
Given sample size 'n' =54
Mean of the sample x⁻ = 81.1
standard deviation of the sample 'S' = 8.4
<em> 90% confidence interval for the number of seeds for the species</em>

<u><em>Step(ii):-</em></u>
Degrees of freedom
ν = n-1 = 54-1 =53


(81.1- 2.2927 ,81.1 + 2.2927 )
(78.8073 ,83.3927)
<u><em>Final answer:-</em></u>
<em> 90% confidence interval for the number of seeds for the species</em>
(78.8073 ,83.3927)