1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ser-zykov [4K]
2 years ago
12

Find the value of x. if necessary, round to the nearest tenth.

Mathematics
1 answer:
irina [24]2 years ago
6 0

This looks blury can you get it a little more clear or  I think it is just me!

You might be interested in
The number of people contacted at each level of a phone tree can be represented by f(x) = 3x, where x represents the level.What
Sloan [31]

Answer: The answer to this bummy  question is B

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Need this question ASAP!!! Grayson bought a rectangular waste basket that is 1 1/2 feet long, 3/4 foot wide, and 2 feet high . F
deff fn [24]

Answer:

9/4 cubic feet

Step-by-step explanation:

1.5*3/4*2=9/4

4 0
3 years ago
Dos cuadrados de lado
Kaylis [27]

La franja amarilla del rectángulo tiene un área de 30 centímetros cuadrados.

<h3>¿Cuál es el área de la franja amarilla del rectángulo?</h3>

En este problema tenemos un rectángulo formado por dos cuadrados que se traslapan uno al otro. La franja amarilla es el área en la que los cuadrados se traslapan. La anchura del rectángulo es descrita por la siguiente ecuación:

(10 - x) + 2 · x = 17

Donde x se mide en centímetros.

A continuación, despejamos x en la ecuación descrita:

10 + x = 17

x = 7

Ahora, el área de la franja amarilla se determina mediante la fórmula de area de un rectángulo:

A = b · h

Donde:

  • b - Base del rectángulo, en centímetros.
  • h - Altura del rectángulo, en centímetros.
  • A - Área del rectángulo, en centímetros cuadrados.

A = (10 - 7) · 10

A = 3 · 10

A = 30

El área de la franja amarilla del rectángulo es igual a 30 centímetros cuadrados.

Para aprender más sobre áreas de rectángulos: brainly.com/question/23058403

#SPJ1

8 0
1 year ago
Towers A and B are located 5 miles apart. A ranger spots a fire at a 42-degree angle from tower A. Another fire ranger spots the
lord [1]

Answer: The fire is 3.5 miles from tower B

Step-by-step explanation: Please refer to the attached diagram. The triangle in the attached diagram illustrates the clues given in the question. Both rangers are standing at points A and B respectively with a distance of 5 miles between them, which is line AB. Also, one ranger spots a fire from a tower at an angle of 42 degrees, which is point A. Another ranger spots the same fire from another tower, but from an angle of 64 degrees, which is point B. The fire is at point C on the triangle. Now we have a triangle with only one side known (5 miles) and three angles known (the third angle is computed as 180 - {64+42} which equals 74) which are 64 degrees, 42 degrees and 74 degrees.

The distance from the fire to tower B is calculated using the law of sines. (Note that this is not a right angled triangle, hence we cannot use trigonometric ratios). The law of sines is expressed as follows;

a/SinA = b/SinB or

a/SinA = c/SinC

Depending on the sides and angles we are given and the ones we are to calculate.

The distance from the fire to tower B is line BC, labeled as a in our diagram. Using the law of sines

a/SinA = c/SinC

(Note also that a is directly facing angle A, c is directly facing angle C, and so on)

a/SinA = c/SinC

a/Sin 42 = 5/Sin 74

By cross multiplication we now have

a (Sin 74) = 5 (Sin 42)

Divide both sides of the equation by Sin 74 and we now arrive at

a = 5 (Sin 42)/Sin 74

a = 5 (0.6691)/0.9613

a = 3.3455/0.9613

a = 3.4802

{rounded to the nearest tenth of a mile, a equals 3.5}

Therefore the distance from tower B to the fire is approximately 3.5 miles

3 0
3 years ago
Example 2
PIT_PIT [208]

Answer: (a) 314.2cm², (b) 157.1cm², (c) 78.55cm² (e) 6.77

Step-by-step explanation: (a)  Area of the circle with radius of 10 cm = πr²

                                                                          = 3.142 × 10 × 10

                                                                          = 3.142 × 100

                                                                          = 314.2cm²

The formula                                                       = πr²

(b)  Area of the half of a circle known as semicircle

                                                                         = πr²/2

                                                                         = 3.142 ×10 × 10/2

                                                                         = 3.142 × 50

                                                                         = 157.1cm²

The formula                                                      = πr²/2

(c)  A quarter of a circle is called quadrant

                                                            = πr²/4

                                                            = 3.142 × 10 × 10/4

                                                            = 314.2/4

                                                            = 78.55cm²

The formula is written thus = πr²/4, which implies that the circle is divided into 4 unit

(d) The conjecture about how to determine the area of the sector is

Formula of a sector = ∅/360(πr²)

<u>Information</u>

The arc  cant be 60°, therefore information incomplete.

(e) Area of the sector with the angle AOB of 60° = 24.

To find the radius of the angle, make v the subject of the formula from the formula.

Sector area = πr²∅/360°

equate formula to 24.

Therefore πr²∅/360° = 24

Multiply through by360° to make it a linear expression

It now becomes πr²∅ =24× 360°

                                                     r² = 24  x 360/π × ∅°

                                                     r² = 24 × 360° /3.142 × 60°

                                                     r² = 3,640/188.52

                                                     r² = 45.8

To find r , we take the square root of both side by applying laws of indicies

                                    Therefore r = √45 .8

                                                      r = 6.77

(f)   General formula = ∅°/360° × (πr²)

angle substended at centre by the arc = x°

assuming the radius of the circle = ycm, Therefore,  area of the sector = { ∅°/360° × πy² }

                                                     

                                                   

8 0
3 years ago
Other questions:
  • Which is bigger? 3/6 or 4/6
    8·1 answer
  • According to the given information, quadrilateral RECT is a rectangle. By the definition of a rectangle, all four angles measure
    11·1 answer
  • How to be good at maths if you cant keep up in class
    13·2 answers
  • Bill and Bob cycle in opposite directions. Bill cycles at 12 km/h
    10·1 answer
  • What is the height of a triangle that has an area of 63 yd and a base with a length of 18 yards
    7·1 answer
  • Can someone please please help me :(
    8·1 answer
  • What is the LATERAL surface area of the rectangular pyramid below???
    7·2 answers
  • A softball has a surface area of 201 square
    11·1 answer
  • Put the following numbers in order from least to greatest: 66 1/3, 72 5/8, 203/4, 109/2
    9·1 answer
  • Find the volume of this sphere.<br> Use 3 for TT.<br> V V ~ [?]cm3<br> V = nr3<br> r=6cm
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!