Answer:
Step-by-step explanation:
The given piecewise function i
From the given function it is clear that function is divided at x=-1 and x=2. It means we check the discontinuity at x=-1 and x=2.
For x=-1,
LHL:
Since LHL ≠ f(-1), therefore the given function is discontinuous at x=-1.
For x=2,
LHL:
Since LHL ≠ f(2), therefore the given function is discontinuous at x=2.
Therefore, the correct option is A.
This problem can be readily solved if we are familiar with the point-slope form of straight lines:
y-y0=m(x-x0) ...................................(1)
where
m=slope of line
(x0,y0) is a point through which the line passes.
We know that the line passes through A(3,-6), B(1,2)
All options have a slope of -4, so that should not be a problem. In fact, if we check the slope=(yb-ya)/(xb-xa), we do find that the slope m=-4.
So we can check which line passes through which point:
a. y+6=-4(x-3)
Rearrange to the form of equation (1) above,
y-(-6)=-4(x-3) means that line passes through A(3,-6) => ok
b. y-1=-4(x-2) means line passes through (2,1), which is neither A nor B
****** this equation is not the line passing through A & B *****
c. y=-4x+6 subtract 2 from both sides (to make the y-coordinate 2)
y-2 = -4x+4, rearrange
y-2 = -4(x-1)
which means that it passes through B(1,2), so ok
d. y-2=-4(x-1)
this is the same as the previous equation, so it passes through B(1,2),
this equation is ok.
Answer: the equation y-1=-4(x-2) does NOT pass through both A and B.
By using the AAA congruence property of Triangles, △aec≅△deb is proved
It is given two triangles, Δaec and Δdeb, where e is the common point known as the midpoint of ad
Also, it is given that,
ca ║db
We need to prove that, △aec≅△deb
Then we'll use AAA congruence property of Triangles to prove the situation
As ca ║db
then, ∠cae = ∠ebd (Alternate angles)
∠ace = ∠edb (Alternate angles)
and ∠aec = ∠deb (common angles)
Thus, by AAA congruence property, △aec≅△deb
Hence, proved
To learn more about, congruence property, here
brainly.com/question/2039214
#SPJ4
Answer:
p=6.2
Step-by-step explanation:
Answer:
a Euclidean space, the sum of angles of a triangle equals the straight angle (180 degrees, π radians, two right angles, or a half-turn). A triangle has three angles, one at each vertex, bounded by a pair of adjacent sides.