You have to put the number in the graph
Answer:
3 trips
Step-by-step explanation:
We would divide the amount of riders the roller coaster could take in a single trip by the total number of riders to determine how many trips it can make.
max amount of riders/total riders
72/24 = 3
Hence, the rollercoaster made 3 trips.

Answer:
12.0 tablet computers/month
Step-by-step explanation:
The average price of the tablet 25 months from now will be:

Next, we determine the rate at which the quantity demanded changes with respect to time.
Using Chain Rule (and a calculator)

![\dfrac{dx}{dp}= \dfrac{d}{dp}\left[{ \dfrac { 100 } { 9 } \sqrt { 810,000 - p ^ { 2 } } }\right] =-\dfrac{100}{9}p(810,000-p^2)^{-1/2}](https://tex.z-dn.net/?f=%5Cdfrac%7Bdx%7D%7Bdp%7D%3D%20%5Cdfrac%7Bd%7D%7Bdp%7D%5Cleft%5B%7B%20%5Cdfrac%20%7B%20100%20%7D%20%7B%209%20%7D%20%5Csqrt%20%7B%20810%2C000%20-%20p%20%5E%20%7B%202%20%7D%20%7D%20%7D%5Cright%5D%20%3D-%5Cdfrac%7B100%7D%7B9%7Dp%28810%2C000-p%5E2%29%5E%7B-1%2F2%7D)
![\dfrac{dp}{dt}=\dfrac{d}{dt}\left[\dfrac { 400 } { 1 + \dfrac { 1 } { 8 } \sqrt { t } } + 200 \right]=-25\left[1 + \dfrac { 1 } { 8 } \sqrt { t } \right]^{-2}t^{-1/2}](https://tex.z-dn.net/?f=%5Cdfrac%7Bdp%7D%7Bdt%7D%3D%5Cdfrac%7Bd%7D%7Bdt%7D%5Cleft%5B%5Cdfrac%20%7B%20400%20%7D%20%7B%201%20%2B%20%5Cdfrac%20%7B%201%20%7D%20%7B%208%20%7D%20%5Csqrt%20%7B%20t%20%7D%20%7D%20%2B%20200%20%5Cright%5D%3D-25%5Cleft%5B1%20%2B%20%5Cdfrac%20%7B%201%20%7D%20%7B%208%20%7D%20%5Csqrt%20%7B%20t%20%7D%20%5Cright%5D%5E%7B-2%7Dt%5E%7B-1%2F2%7D)
Therefore:
![\dfrac{dx}{dt}= \left[-\dfrac{100}{9}p(810,000-p^2)^{-1/2}\right]\left[-25\left[1 + \dfrac { 1 } { 8 } \sqrt { t } \right]^{-2}t^{-1/2}\right]](https://tex.z-dn.net/?f=%5Cdfrac%7Bdx%7D%7Bdt%7D%3D%20%5Cleft%5B-%5Cdfrac%7B100%7D%7B9%7Dp%28810%2C000-p%5E2%29%5E%7B-1%2F2%7D%5Cright%5D%5Cleft%5B-25%5Cleft%5B1%20%2B%20%5Cdfrac%20%7B%201%20%7D%20%7B%208%20%7D%20%5Csqrt%20%7B%20t%20%7D%20%5Cright%5D%5E%7B-2%7Dt%5E%7B-1%2F2%7D%5Cright%5D)
Recall that at t=25, 
Therefore:
![\dfrac{dx}{dt}(25)= \left[-\dfrac{100}{9}\times 446.15(810,000-446.15^2)^{-1/2}\right]\left[-25\left[1 + \dfrac { 1 } { 8 } \sqrt {25} \right]^{-2}25^{-1/2}\right]\\=12.009](https://tex.z-dn.net/?f=%5Cdfrac%7Bdx%7D%7Bdt%7D%2825%29%3D%20%5Cleft%5B-%5Cdfrac%7B100%7D%7B9%7D%5Ctimes%20446.15%28810%2C000-446.15%5E2%29%5E%7B-1%2F2%7D%5Cright%5D%5Cleft%5B-25%5Cleft%5B1%20%2B%20%5Cdfrac%20%7B%201%20%7D%20%7B%208%20%7D%20%5Csqrt%20%7B25%7D%20%5Cright%5D%5E%7B-2%7D25%5E%7B-1%2F2%7D%5Cright%5D%5C%5C%3D12.009)
The quantity demanded per month of the tablet computers will be changing at a rate of 12 tablet computers/month correct to 1 decimal place.
Answer:
B
Step-by-step explanation:
For example, subtract 56 by 47, you get 9. Each term is 9 more than the previous term.
Answer:
Yes. The data provide enough evidence to support the claim that the mean weight of one-year-old boys is greater than 25 pounds.
P-value=P(t>2.84)=0.0024
Step-by-step explanation:
Hypothesis test on the population mean.
The claim is that the mean weight of one-year-old boys is greater than 25 pounds.
Then, the null and alternative hypothesis are:

The significance level is α=0.05.
The sample size is n=354. The sample mean is 25.8 pounds and the sample standard deviation is 5.3 pounds. As the population standard deviation is estimated from the sample standard deviation, we will use a t-statistic.
The degrees of freedom are:

The t-statistic is:

For a right tailed test and 353 degrees of freedom, the P-value is:

As the P-value is smaller than the significance level, the effect is significant and the null hypothesis is rejected.
There is enough evidence to support the claim that the mean weight of one-year-old boys is greater than 25 pounds.