Answer:
a) ![1-\frac{1}{k^2} =1- \frac{1}{2^2}= 1-0.25 = 0.75](https://tex.z-dn.net/?f=%201-%5Cfrac%7B1%7D%7Bk%5E2%7D%20%3D1-%20%5Cfrac%7B1%7D%7B2%5E2%7D%3D%201-0.25%20%3D%200.75)
So we expected about 75% within two deviations from the mean
b) ![1-\frac{1}{k^2} =1- \frac{1}{1.5^2}= 1-0.4444 = 0.556](https://tex.z-dn.net/?f=%201-%5Cfrac%7B1%7D%7Bk%5E2%7D%20%3D1-%20%5Cfrac%7B1%7D%7B1.5%5E2%7D%3D%201-0.4444%20%3D%200.556)
So we expected about 55.6% within 1.5 deviations from the mean
And the limits are:
![Lower = 3.41 -1.5*0.09 = 3.275](https://tex.z-dn.net/?f=%20Lower%20%3D%203.41%20-1.5%2A0.09%20%3D%203.275)
![Upper = 3.41 +1.5*0.09 = 3.545](https://tex.z-dn.net/?f=%20Upper%20%3D%203.41%20%2B1.5%2A0.09%20%3D%203.545)
c) We can calculate how many deviations we are within the mean with the limits with this formula:
![z =\frac{x-\mu}{\sigma}](https://tex.z-dn.net/?f=%20z%20%3D%5Cfrac%7Bx-%5Cmu%7D%7B%5Csigma%7D)
And using the lower limit we got:
![z = \frac{3.05-3.41}{0.09}=-4](https://tex.z-dn.net/?f=%20z%20%3D%20%5Cfrac%7B3.05-3.41%7D%7B0.09%7D%3D-4)
And with the upper limit we got:
![z = \frac{3.77-3.41}{0.09}=4](https://tex.z-dn.net/?f=%20z%20%3D%20%5Cfrac%7B3.77-3.41%7D%7B0.09%7D%3D4)
So then the value of k =4 and the percentage is given by:
![1-\frac{1}{k^2} =1- \frac{1}{4^2}= 1-0.0625 = 0.9375](https://tex.z-dn.net/?f=%201-%5Cfrac%7B1%7D%7Bk%5E2%7D%20%3D1-%20%5Cfrac%7B1%7D%7B4%5E2%7D%3D%201-0.0625%20%3D%200.9375)
Step-by-step explanation:
Previous concepts and Data given
reprsent the population mean
represent the population standard deviation
The Chebyshev's Theorem states that for any dataset
• We have at least 75% of all the data within two deviations from the mean.
• We have at least 88.9% of all the data within three deviations from the mean.
• We have at least 93.8% of all the data within four deviations from the mean.
Or in general words "For any set of data (either population or sample) and for any constant k greater than 1, the proportion of the data that must lie within k standard deviations on either side of the mean is at least:
Part a
For this case we can find the percentage required replaincg k =2 and we got:
![1-\frac{1}{k^2} =1- \frac{1}{2^2}= 1-0.25 = 0.75](https://tex.z-dn.net/?f=%201-%5Cfrac%7B1%7D%7Bk%5E2%7D%20%3D1-%20%5Cfrac%7B1%7D%7B2%5E2%7D%3D%201-0.25%20%3D%200.75)
So we expected about 75% within two deviations from the mean
Part b
For this case we can find the percentage required replaincg k =2 and we got:
![1-\frac{1}{k^2} =1- \frac{1}{1.5^2}= 1-0.4444 = 0.556](https://tex.z-dn.net/?f=%201-%5Cfrac%7B1%7D%7Bk%5E2%7D%20%3D1-%20%5Cfrac%7B1%7D%7B1.5%5E2%7D%3D%201-0.4444%20%3D%200.556)
So we expected about 55.6% within 1.5 deviations from the mean
And the limits are:
![Lower = 3.41 -1.5*0.09 = 3.275](https://tex.z-dn.net/?f=%20Lower%20%3D%203.41%20-1.5%2A0.09%20%3D%203.275)
![Upper = 3.41 +1.5*0.09 = 3.545](https://tex.z-dn.net/?f=%20Upper%20%3D%203.41%20%2B1.5%2A0.09%20%3D%203.545)
Part c
We can calculate how many deviations we are within the mean with the limits with this formula:
![z =\frac{x-\mu}{\sigma}](https://tex.z-dn.net/?f=%20z%20%3D%5Cfrac%7Bx-%5Cmu%7D%7B%5Csigma%7D)
And using the lower limit we got:
![z = \frac{3.05-3.41}{0.09}=-4](https://tex.z-dn.net/?f=%20z%20%3D%20%5Cfrac%7B3.05-3.41%7D%7B0.09%7D%3D-4)
And with the upper limit we got:
![z = \frac{3.77-3.41}{0.09}=4](https://tex.z-dn.net/?f=%20z%20%3D%20%5Cfrac%7B3.77-3.41%7D%7B0.09%7D%3D4)
So then the value of k =4 and the percentage is given by:
![1-\frac{1}{k^2} =1- \frac{1}{4^2}= 1-0.0625 = 0.9375](https://tex.z-dn.net/?f=%201-%5Cfrac%7B1%7D%7Bk%5E2%7D%20%3D1-%20%5Cfrac%7B1%7D%7B4%5E2%7D%3D%201-0.0625%20%3D%200.9375)