3-degree polynomial is f(x )= ![[x^{3 }-\frac{9}{7} x^{2}+9x-\frac{81}{7} ]](https://tex.z-dn.net/?f=%5Bx%5E%7B3%20%7D-%5Cfrac%7B9%7D%7B7%7D%20x%5E%7B2%7D%2B9x-%5Cfrac%7B81%7D%7B7%7D%20%5D)
Step-by-step explanation:
Given that polynomial f(x) is 3-degree polynomial and Zeros/Roots at x=
and x= -3i
In order to find the equation of a 3-degree polynomial, we need 3 roots.
Here, One of Root is real number x=
and another root is an imaginary number x=(-3i)
It is necessary to note that imaginary roots always come in pair of conjugates
Therefore, Comjugate0 of x =(-3i) is 3rd root
Conjugate of (-3i) is 3i
Evaluting equation of polynomial,
=![[x-3i][x+3i][x-\frac{9}{7} ]](https://tex.z-dn.net/?f=%5Bx-3i%5D%5Bx%2B3i%5D%5Bx-%5Cfrac%7B9%7D%7B7%7D%20%5D)
=![[x^{2}-(3i)^{2}][x-\frac{9}{7} ]](https://tex.z-dn.net/?f=%5Bx%5E%7B2%7D-%283i%29%5E%7B2%7D%5D%5Bx-%5Cfrac%7B9%7D%7B7%7D%20%5D)
=![[x^{2}-(9)(i)^{2}][x-\frac{9}{7} ]](https://tex.z-dn.net/?f=%5Bx%5E%7B2%7D-%289%29%28i%29%5E%7B2%7D%5D%5Bx-%5Cfrac%7B9%7D%7B7%7D%20%5D)
=![[x^{2}+9][x-\frac{9}{7} ]](https://tex.z-dn.net/?f=%5Bx%5E%7B2%7D%2B9%5D%5Bx-%5Cfrac%7B9%7D%7B7%7D%20%5D)
f(x )= ![[x^{3 }-\frac{9}{7} x^{2}+9x-\frac{81}{7} ]](https://tex.z-dn.net/?f=%5Bx%5E%7B3%20%7D-%5Cfrac%7B9%7D%7B7%7D%20x%5E%7B2%7D%2B9x-%5Cfrac%7B81%7D%7B7%7D%20%5D)