Suppose 110.0 mL of hydrogen gas at STP combines with a stoichiometric amount of fluorine gas and the resulting hydrogen fluoride dissolves in water to form 150.0 mL of an aqueous solution. 0.032 M is the concentration of the resulting hydrofluoric acid.
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
Now write the balanced chemical equation
H₂ + F₂ → 2HF
<h3>What is Ideal Gas ?</h3>
An ideal gas is a gas that obey gas laws at all temperature and pressure conditions. It have velocity and mass but do not have volume. Ideal gas is also called perfect gas. Ideal gas is a hypothetical gas.
It is expressed as:
PV = nRT
where,
P = Pressure
V = Volume
n = number of moles
R = Ideal gas constant
T = temperature
Here,
P = 1 atm [At STP]
V = 110 ml = 0.11 L
T = 273 K [At STP]
R = 0.0821 [Ideal gas constant]
Now put the values in above expression
PV = nRT
1 atm × 0.11 L = n × 0.0821 L.atm/ K. mol × 273 K

n = 0.0049 mol
<h3>How to find the concentration of resulting solution ? </h3>
To calculate the concentration of resulting solution use the expression

= 0.032 M
Thus from the above conclusion we can say that Suppose 110.0 mL of hydrogen gas at STP combines with a stoichiometric amount of fluorine gas and the resulting hydrogen fluoride dissolves in water to form 150.0 mL of an aqueous solution. 0.032 M is the concentration of the resulting hydrofluoric acid.
Learn more about the Ideal Gas here: brainly.com/question/25290815
#SPJ4
Answer:
3.56x10^24 molecules
Explanation:
The following data were obtained from the question:
Mass of Na2SO4 = 840g
Molar Mass of Na2SO4 = (23 x2) + 32 + (16x4) =46 + 12 + 64 = 142g/mol
From Avogadro's hypothesis, 1mole of any substance contains 6.02x10^23 molecules. This also gives that 1mole of Na2SO4 contains 6.02x10^23 molecules.
If 1 mole (i.e 142g) contains 6.02x10^23 molecules,
Therefore, 840g of Na2SO4 will contain = (840 x 6.02x10^23)/142 = 3.56x10^24 molecules
Answer:
It is necessary to use models to study sub- microscopic objects such as atoms and molecules because they are too small to be seen.
It will change position.
For example, you are pushing a water bottle. The push is a force that is imbalance because there is no other force pushing the water back. So if you push the water bottle, it will move. When it moves, it is also call, "Changing position" because its location changed.
I am not sure about this but I think it’s y