Answer:
Metallic bonding is found in metals and their alloys. When the atoms give up their valence electrons, they form ions. These ions are held together by the electron cloud surrounding them. Metals are shiny because they have a lot of free (i.e. delocalized) electrons that form a cloud of highly mobile negatively charged electrons on and beneath the smooth metal surface in the ideal case. ... In the absence of any external EM field, the charges in the plasma are uniformly distributed within the metal.
Explanation:
In metallic bonding, the electrons are “surrendered” to a common pool and become shared by all the atoms in the solid metal.
Hope this helps! If you dont understand balancing equations in general, say so in the comments, I’m happy to help
The general form would be
Reactants ---> Products
2C4H10 + 13O2 = 8CO2 + 10H2O
1. (2.06g C4H10)/(58.12 g/mol C4H10) = 0.035mol C4H10
2. (0.035molC4H10)(10 mol H2O/2mol C4H10) = 0.177mol H2O
3. (0.177mol H2O)(18.01g/mol H2O) = 3.19g H2O
Answer:
1.58×10E18
Explanation:
Since we have the reduction potentials we could make decisions regarding which one will be the anode or cathode. Evidently, bromine having the more positive reduction potential will be the cathode while the iodine will be the anode.
E°cell= 1.07- 0.53= 0.54 V
E°cell= 0.0592/n logK
0.54 = 0.0592/2 logK
logK= 0.54/0.0296
logK= 18.2
K= Antilog (18.2)
K= 1.58×10^18