3Mg + N₂= Mg₃N₂
n(Mg)=12,2g÷<span>24,4g/mol=0,5mol-limiting reagent
</span>n(N₂)=5,16g÷28g/mol=0,18mol
n(Mg₃N₂):n(Mg)=1:3, n(Mg₃N₂)=0,166mol, m(Mg₃N₂)=0,166·101,2=16,8g.
%(N)= 2·Ar(N)÷Mr(Mg₃N₂) = 2·14÷101,2=27,66%=0,2766
%(Mg) = 3·Ar(Mg)÷Mr(Mg₃N₂)= 3·24,4÷101,2=72,34% or 100% - 27,66%= 72,34%.
Answer:
magnesium
Explanation:
because zinc does not react with water because it too forms a protective layer of insoluble.
The answer is True because elements in a compound combine and become an entirely different substance with its own unique properties.
Answer:
k = 0.0306 min-1
Explanation:
The table is given as;
Time, Concentration
0 1.48
5 1.27
10 0.98
15 0.84
The integrated rate law for a first order reaction is given as;
ln [A] = -kt + ln [Ao]
where;
[A] = Final Concentration
[Ao] = Initial Concentration
k = rate constant
t = time
In the table, taking the first two sets of values;
t = 5
k = ?
[Ao] = 1.48
[A] = 1.27
Inserting into the equation;
ln(1.27) = - k (5) + ln(1.48)
ln(1.27) - ln(1.48) = -5k
-0.1530 = -5k
k = -0.1530 / -5
k = 0.0306 min-1
<span>What caused the bubbles to form when you added the catalyses to the hydrogen peroxide and water mixture at 40 °C? A. Catalyses activity heated the solution to its boiling point. B. Hydrogen gas formed during the formation of hydrogen peroxide. C. Oxygen gas formed during the decomposition of hydrogen peroxide.
This would be the water, mixture.</span>