Answer:
Substitute the w‘s in the equation for 2.
8(2)^2+8(2)+9
32+16+9
57
:)
Answer:
19. x = 65
20. x = 12
21. x = 35, y = 85
Step-by-step explanation:
19. 2x -10 = 120
2x (-10 + 10) = (120 +10)
2x/2 = 130/2
x = 65
20. 2x + 4x + 108 = 180
6x + (108 - 108) = (180 - 108)
6x/6 = 72/6
x = 12
21. 2x + 25 = 3x - 10
2x + (25 - 25) = 3x (- 10 - 25)
(2x - 3x) = (3x - 3x) - 35
-x/-1 = -35/-1
x = 35
3x - 10 + y = 180
3(35) - 10 + y = 180
105 - 10 + y = 180
(95 - 95) + y = (180 - 95)
y = 85
Answer:
3 ln(x − 1) − 3/(x − 1) + C
Step-by-step explanation:
∫ 3x / (x − 1)² dx
3 ∫ x / (x − 1)² dx
If u = x − 1, then x = u + 1, and du = dx.
3 ∫ (u + 1) / u² du
3 ∫ (1/u + 1/u²) du
3 (ln u − 1/u + C)
3 ln u − 3/u + C
Substitute back:
3 ln(x − 1) − 3/(x − 1) + C
Answer:(2,36)and (3,54)
Step-by-step explanation:
The problem can be translated into an equation that is something like 4/5 + 3/x = 1/2
we cannot have x equal to zero because the number can be infinite.
So the LCD here is 10x, so multiply both sides by that to get:
8x + 30 = 5x
Subtract 5x and 30 from both sides:
3x = -30
divide:
x = -10
The solution isn't zero so there is a solution.