Answer:
see explanation
Step-by-step explanation:
I don't have graphing facilities but can give you the vertex and 1 other point.
Given a parabola in standard form
y = ax² + bx + c ( a ≠ 0 )
Then the x- coordinate of the vertex is
x = - ![\frac{b}{2a}](https://tex.z-dn.net/?f=%5Cfrac%7Bb%7D%7B2a%7D)
y = - x² - 2x + 8 ← is in standard form
with a = - 1 and b = - 2 , then
x = -
= - 1
Substitute x = - 1 into the equation for corresponding value of y
y = - (- 1)² - 2(- 1) + 8 = - 1 + 2 + 8 = 9
vertex = (- 1, 9 )
To obtain another point substitute any value for x into the equation
x = 0 : y = 0 - 0 + 8 , then (0, 8 ) is a point on the graph
x = 2 : y = - (2)² - 2(2) + 8 = - 4 - 4 + 8 = 0 then (2, 0 ) is a point on the graph
Answer:
![\displaystyle d = 10](https://tex.z-dn.net/?f=%5Cdisplaystyle%20d%20%3D%2010)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra II</u>
- Distance Formula:
![\displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20d%20%3D%20%5Csqrt%7B%28x_2-x_1%29%5E2%2B%28y_2-y_1%29%5E2%7D)
Step-by-step explanation:
<u>Step 1: Define</u>
Point (4, 6)
Point (-2, -2)
<u>Step 2: Find distance </u><em><u>d</u></em>
Simply plug in the 2 coordinates into the distance formula to find distance <em>d</em>
- Substitute [DF]:
![\displaystyle d = \sqrt{(-2-4)^2+(-2-6)^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20d%20%3D%20%5Csqrt%7B%28-2-4%29%5E2%2B%28-2-6%29%5E2%7D)
- Subtract:
![\displaystyle d = \sqrt{(-6)^2+(-8)^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20d%20%3D%20%5Csqrt%7B%28-6%29%5E2%2B%28-8%29%5E2%7D)
- Exponents:
![\displaystyle d = \sqrt{36+64}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20d%20%3D%20%5Csqrt%7B36%2B64%7D)
- Add:
![\displaystyle d = \sqrt{100}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20d%20%3D%20%5Csqrt%7B100%7D)
- Evaluate:
![\displaystyle d = 10](https://tex.z-dn.net/?f=%5Cdisplaystyle%20d%20%3D%2010)
Answer:
v = 220 yd²
Step-by-step explanation:
Small portion
v = 5 * 4 * 3
v = 60 yd²
Large portion
v = 9 * 6 * 3
v = 162 yd²
Total
v = 60 + 162
v = 220 yd²
I believe the answer is C