Answer:

Step-by-step explanation:
The <u>width</u> of a square is its <u>side length</u>.
The <u>width</u> of a circle is its <u>diameter</u>.
Therefore, the largest possible circle that can be cut out from a square is a circle whose <u>diameter</u> is <u>equal in length</u> to the <u>side length</u> of the square.
<u>Formulas</u>



If the diameter is equal to the side length of the square, then:

Therefore:

So the ratio of the area of the circle to the original square is:

Given:
- side length (s) = 6 in
- radius (r) = 6 ÷ 2 = 3 in


Ratio of circle to square:

To factor, you can first treat it like a single bracket and find the common factor. In this case, the common factor is 3x, so you get
3x(x² + 7x + 12)
Now you can factor the bracket normally, by finding factors of 12 that add up to make 7. The factors would be 3 and 4, so the bracket becomes (x + 3)(x + 4).
This leaves your final answer as
3x(x + 3)(x + 4)
I hope this helps!
Answer:
plot the reflection by finding the corresponding points by pretending that y=x-6 is the x-axis, so like (4,-1), (0,-5), (0,-3)
Step-by-step explanation:
Answer:
m∠CFD is 70°
Step-by-step explanation:
In the rhombus
- Diagonals bisect the vertex angles
- Every two adjacent angles are supplementary (their sum 180°)
Let us solve the question
∵ CDEF is a rhombus
∵ ∠E and ∠F are adjacent angles
→ By using the second property above
∴ ∠E and ∠F are supplementary
∵ The sum of the measures of the supplementary angles is 180°
∴ m∠E + m∠F = 180°
∵ m∠E = 40°
∴ 40° + m∠F = 180°
→ Subtract 40 from both sides
∵ 40 - 40 + m∠F = 180 - 40
∴ m∠F = 140°
∵ FD is a diagonal of the rhombus
→ By using the first property above
∴ FD bisects ∠F
→ That means FD divides ∠F into 2 equal angles
∴ m∠CFD = m∠EFD =
m∠F
∴ m∠CFD =
(140°)
∴ m∠CFD = 70°
Answer:
#UseSimplifiedExpression
Step-by-step explanation: