Answer:
23.62 cm
Step-by-step explanation:
The question asking for a condition when the total area of the square and the circle(A) is minimum/lowest. To find the lowest area you can get, you have to differentiate the formula for the total area(A).
The wire is 77cm long, let's say x is the square side and r is the circle radius. Then it will be
77cm= 4x +    2 *  π  * r  
4x= 77cm -   2 *  π  * r  
x= (77cm -  (π  * r ))/4  
Square area is x^2 while circle area is  π *r^2. Total area will be:
A= square area + circle area
A==  x^2 + π *r^2  
A=  ( (77 -  (π  r ))/4   ) ^2                       +  π *r^2    
A=(5929- (144 *  π  r )  + π^2  r^2)/ 16  + π *r^2    
A= 370.56 - 9  π  r   +   π^2  r^2/16  +  π *r^2      
A= 370.56 - 28.26  r   +  0.616r^2  +  3.14*r^2  =
A= 370.56 -  28.26   r   +  3.756  r^2        
Differentiate the equation to find the lowest point
370.56 -  28.26   r   +  3.756  r^2 
- 28.26   +  7.512 r = 0
r=  28.26  / 7.512 
r = 3.76 cm
Radius of circle when A minimum is 3.76cm, then the perimeter will be: 2 *  π  *3.76=  23.62 cm