Answer:
Step-by-step explanation:
What this question is asking of you is what is the greatest common divisor of 12 and 15. Or, what is the biggest number that divides both 12 and 15.
in order to find this we have to split each number into it's prime components.
for 12 they are 2,2 and 3 (
2
⋅
2
⋅
3
=
12
)
and for 15 they are 3 and 5 (
3
⋅
5
=
15
)
Out of those two groups (2,2,3) and (3,5) the only thing in common is 3, so 3 is the greatest common divisor. That tells us that the greatest number of groups that can exist and have the same number of girls and the same number of boys for each group is 3.
Now to find out how many girls and boys there are going to be in each group we divide the totals by 3, so:
12
3
=
4
girls per group, and
15
3
=
5
boys per group.
(just as a thought exercise, if there were 16 boys, the divisors would have been (2,2,3) and (2,2,2,2), leaving us with 4 groups [
2
⋅
2
] of 3 girls [12/4] and 4 boys [16/4] )
Answer:
4
Step-by-step explanation:
Recall a linear function, is a line on a graph made up of an infinite amount of points which satisfy the relationship. That means at x=3 there is a specific point on the line with an output. The value of a function at x=3 asks, what is the output y value for the input x value?
To find it, we locate 3 on the x-axis. We draw a vertical line directly to the line following the grid line. We mark the point on the line. We then draw a horizontal line directly to the y-axis following the grid line. The point we hit on the y-axis is the value of the function.
Here it is 4.
We have that
<span>3x-2y=8 -----> equation 1
2x+3y=Q----> equation 2
the solution is the point </span><span>(4,2)
in the equation 2 substitute the value of
x=4
y=2
so
</span>2x+3y=Q------> 2*4+3*2=Q-------> Q=8+6------> Q=14
<span>
the answer is
Q=14
</span>
Answer:
Option (B)
Step-by-step explanation:
To calculate the distance between C2 and SW1 we will use the formula of distance between two points
and
.
d = 
Coordinates representing positions of C2 and SW1 are (2, 2) and (-6, -7) respectively.
By substituting these coordinates in the formula,
Distance between these points = 
= 
=
units
Therefore, Option (B) will be the correct option.
Answer:
3 to the power of 4 and 2 squared
Step-by-step explanation:
count the amount of numbers and put the little number in top right (exponent)