Answer: The height of the triangle is: " 3.5 cm " .
_______________________________________________________
<u>
Note</u>: The formula/equation for the area, "A" , of a triangle is:
A = (1/2) * b * h ; or write as: A = (b * h) / 2 ;
_________________________________________________
in which: "A = area of the triangle" ;
"b = base length" ;
"h = "[perpendicular] height" ;
_________________________________________________
Given: h = (b/2) ;
A = 12.25 cm²
{Note: Let us assume that the given area was "12.25 cm² " .}.
_________________________________________________
We are to find the height, "h" ;
The formula for the Area, "A", is: A = (b * h) / 2 ;
Let us rearrange the formula ;
to isolate the "h" (height) on one side of the equation;
→ Multiply EACH side of the equation by "2" ; to eliminate the "fraction" ;
2*A = [ (b * h) / 2 ] * 2 ;
to get: " 2A = b * h " ;
↔ " b * h = 2A " ;
Divide EACH SIDE of the equation by "b" ; to isolate "h" on one side of the equation:
→ (b * h) / b = (2A) / b ;
to get:
→ h = 2A / b ;
Since "h = b/2" ; subtitute "b/2" for "h" ;
Plug in: "12.25 cm² " for "A" ;
→ b/2 = 2A/b ; → Note: " 2A/b = [2* (12.25 cm²) ] / b " ;
Note: " 2* (12.25 cm²) = 24.5 cm² ;
Rewrite as:
→ b/2 = (24.5 cm²) / b ;
_____________________________________
Cross-multiply: b*b = (24.5 cm²) *2 ;
to get: b² = 49 cm² ;
Take the "positive square root" of each side of the equation" ;
to isolate "b" on one side of the equation ; & to solve for "b" ;
→ +√(b²) = +√(49 cm²) ;
→ b = 7 cm ;
Now, we want to solve for "h" (the height) :
_________________________________________________________
→ h = b / 2 = 7 cm / 2 = 3.5 cm ;
_________________________________________________________
Answer: The height of the triangle is: " 3.5 cm <span>" .
</span>_________________________________________________________
The rectangular equation for given parametric equations x = 2sin(t) and y = -3cos(t) on 0 ≤ t ≤ π is
which is an ellipse.
For given question,
We have been given a pair of parametric equations x = 2sin(t) and y = -3cos(t) on 0 ≤ t ≤ π.
We need to convert given parametric equations to a rectangular equation and sketch the curve.
Given parametric equations can be written as,
x/2 = sin(t) and y/(-3) = cos(t) on 0 ≤ t ≤ π.
We know that the trigonometric identity,
sin²t + cos²t = 1
⇒ (x/2)² + (- y/3)² = 1
⇒ 
This represents an ellipse with center (0, 0), major axis 18 units and minor axis 8 units.
The rectangular equation is 
The graph of the rectangular equation
is as shown below.
Therefore, the rectangular equation for given parametric equations x = 2sint and y = -3cost on 0 ≤ t ≤ π is
which is an ellipse.
Learn more about the parametric equations here:
brainly.com/question/14289251
#SPJ4
Answer:
k=8
Step-by-step explanation:
Cab 1 : 1/km
Cab2: 0.5 /km with Base charge =4
x=0.5 x+4
x-0.5x=4
0.5x=4
4/0.5=x
x=8
Assume x=k
k=8
55, and the reason why bc the hole circle is 360 and so grab 360 - 170-80 equals to 110 right and we have to angles left so we divide. 110/2 equals 55