Answer:
0.281 = 28.1% probability a given player averaged less than 190.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean and standard deviation , the z-score of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
A bowling leagues mean score is 197 with a standard deviation of 12.
This means that
What is the probability a given player averaged less than 190?
This is the p-value of Z when X = 190.
has a p-value of 0.281.
0.281 = 28.1% probability a given player averaged less than 190.
Answer:
Let's define the high temperature as T.
We know that:
"four times T, was more than 2*T plus 66°C"
(i assume that the temperature is in °C)
We can write this inequality as:
4*T > 2*T + 66°C
Now we just need to solve this for T.
subtracting 2*T in both sides, we get:
4*T - 2*T > 2*T + 66°C - 2*T
2*T > 66°C
Now we can divide both sides by 2:
2*T/2 > 66°C/2
T > 33°C
So T was larger than 33°C
Notice that T = 33°C is not a solution of the inequality, then we should use the symbol ( for the set notation.
Then the range of possible temperatures is:
(33°C, ...)
Where we do not have an upper limit, so we could write this as:
(33°C, ∞°C)
(ignoring the fact that ∞°C is something impossible because it means infinite energy, but for the given problem it works)