Answer:
c. 8.1 L
Explanation:
Given that:-
Moles of oxygen gas = 0.50 mol
According to the reaction shown below as:-

3 moles of oxygen gas on reaction gives 2 moles of ozone
Also,
1 mole of oxygen gas on reaction gives 2/3 moles of ozone
So,
0.50 mole of oxygen gas on reaction gives
moles of ozone
Moles of ozone = 0.3333 mol
Pressure = 1 atm
Temperature = 25.0 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (25.0 + 273.15) K = 298.15 K
Volume = ?
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
1 atm × V = 0.3333 mol × 0.0821 L.atm/K.mol × 298.15 K
⇒V = 8.1 L
Answer:Option (3) less than the sum of its components' masses
Explanation:
Specific heat is the quantity of heat required to change the temperature of 1 gram of a substance by 1 degree Celsius. It is the amount per unit mass that is required to raise the temperature by one degree Celsius. Every substance has its own specific heat and each has its own distinct value. The units of specific heat are joules per gram-degree Celsius (J/f C) and sometimes J/Kg K may also be used.
We can use the dilution formula to find the volume of the diluted solution to be prepared
c1v1 = c2v2
Where c1 is concentration and v1 is volume of the concentrated solution
And c2 is concentration and v2 is volume of the diluted solution to be prepared
Substituting the values in the equation
15 M x 25 mL = 3 M x v2
v2 = 125 mL
The 25 mL concentrated solution should be diluted with distilled water upto 125 mL to make a 3 M solution