According to Charles' Law the volume of an ideal gas is directly proportional to its absolute temperature in Kelvin keeping the pressure constant.
V∝ T, P is constant
where V, T and P are volume, temperature and pressure
= 
where V₁, T₁, V₂ and T₂ are initial volume, initial temperature, final volume and final temperature.
The difference in an area with high concentration and an area with low concentration is called the concentration gradient.
<h3>
What is Concentration Gradient ?</h3>
A concentration gradient occurs when the concentration of particles is higher in one area than another.
In passive transport, particles will diffuse down a concentration gradient, from areas of higher concentration to areas of lower concentration, until they are evenly spaced.
This difference in an area with high concentration and an area with low concentration is called the concentration gradient.
Learn more about diffusion here ;
brainly.com/question/24746577
#SPJ1
Answer:
25.45 Liters
Explanation:
Using Ideal Gas Law PV = nRT => V = nRT/P
V = (1mole)(0.08206Latm/molK)(298K)/(1atm) = 25.45 Liters
Answer:
B. Poor conductor.
Explanation:
It cannot be A, as only 1 metal is not solid at room temp.
It cannot be C, as most metals are ductile.
It cannot be D, as most metals are malleable.
This leaves B, which is not true about metals, as a lot are very good conductors.
Answer: A. Is decomposition
B. Is synthesis where Na combines with Cl to form NaCl
C. Is single displacement or replacement. Mg displaces Cu.
Explanation: