Answer:
1.09 M
Explanation:
Let's define the equation that will be used to calculate the final concentration of the resultant calcium nitrate solution. In order to calculate it, we need to find the total number of moles of calcium nitrate and divide by the total volume of the resultant solution:

This equation firstly helps us find the number of moles of calcium nitrate. Multiplying molarity by volume will yield the moles. Adding the moles from the first component to the second component will provide us with the total number of moles of calcium nitrate:

Now, the total volume of this solution can be found by adding the volume values of each component:

Finally, dividing the moles found by the total volume will yield the final molarity:

<h3>
Answer:</h3>
0.387 J/g°C
<h3>
Explanation:</h3>
- To calculate the amount of heat absorbed or released by a substance we need to know its mass, change in temperature and its specific heat capacity.
- Then to get quantity of heat absorbed or lost we multiply mass by specific heat capacity and change in temperature.
- That is, Q = mcΔT
in our question we are given;
Mass of copper, m as 95.4 g
Initial temperature = 25 °C
Final temperature = 48 °C
Thus, change in temperature, ΔT = 23°C
Quantity of heat absorbed, Q as 849 J
We are required to calculate the specific heat capacity of copper
Rearranging the formula we get
c = Q ÷ mΔT
Therefore,
Specific heat capacity, c = 849 J ÷ (95.4 g × 23°C)
= 0.3869 J/g°C
= 0.387 J/g°C
Therefore, the specific heat capacity of copper is 0.387 J/g°C
8.3mL
Explanation:
Given parameters:
Mass of acetone = 6.54g
Density of acetone = 0.7857 g/mL
Unknown:
Volume of acetone = ?
Solution:
Density is defined as the mass per unit volume of a substance. It is expressed mathematically as shown below:
Density = 
Since the unknown is volume, we make it the subject of the formula
Volume = 
Input the values;
Volume =
= 8.3mL
learn more:
Volume brainly.com/question/2690299
#learnwithBrainly
Answer:
(c) The retention time would be higher (d) The retention time would be lower.
Explanation:
For the polar solutes which were separated using the hydrophilic interaction chromatography (HILIC) with a strongly polar bonded phase, the retention time would be higher if eluent were changed from 80 vol% to 90 vol% acetonitrile in water.
However, for the polar solutes which were separated using the normal-phase chromatography on bare silica with methyl t=butyl ether and 2-propanol solvent, the retention time would be lower if the eluent were changed from 40 vol% to 60 vol% 2-propanol.
Answer:
453.592 grams
Explanation:
Given
Mass = 1 lb
Required.
Convert to grams using dimensional analysis
Represent 1 lb with x g
In unit conversion, we have that.
1 lb = 453.592 g
So:
Getting the equivalent of lb in g, we have:
x g = 1 lb * (453.592 g/ 1 lb)
x g = 1 * 453.592 g
x g = 453.592 grams
Hence:
The equivalent of 1 lb in grams is 453.592 grams