Answer:
18.018 seconds.
Explanation:
Given that the half life of Manganese, Mn = 3 seconds. The initial sample mass = 90.0 gram, the final sample mass = 1.40 gram.
The general idea to the question is to look for the time it will take to decay from the initial mass that is 90 gram to 1.40 gram.
Therefore, we will be making use of the formula below;
J(t) = J(o) × (1/2)^t/t(hL).
Where t(hL) is the half life, t is the time taken, J(t)= mass after time,t and J(o) is the initial mass. So, let us slot in the values into the equation above.
1.4 = 90 × (1/2)^ t/3.
1.4/90 = (1/2)^t/3.
t/3 = log(0.5) (1.4/90).
+Please note that the 0.5 of the log is at the subscript).
That is the base 0.5 logarithm of (1.4/90) 0.01556 is 6.0060141295.
t = 3 × 6.0060141295.
t = 18.018 seconds.
Gold, Silver, Copper are all part of a class of minerals called Native Elements. Platinum, Graphite, Diamond and Mercury are also apart of this group. Also known as the Native Metals.
Answer:
-179.06 kJ
Explanation:
Let's consider the following balanced reaction.
HCl(g) + NaOH(s) ⟶ NaCl(s) + H₂O(l)
We can calculate the standard enthalpy change for the reaction (ΔH°r) using the following expression.
ΔH°r = 1 mol × ΔH°f(NaCl(s)) + 1 mol × ΔH°f(H₂O(l)) - 1 mol × ΔH°f(HCl(g)) - 1 mol × ΔH°f(NaOH(s))
ΔH°r = 1 mol × (-411.15 kJ/mol) + 1 mol × (-285.83 kJ/mol) - 1 mol × (-92.31 kJ/mol) - 1 mol × (-425.61 kJ/mol)
ΔH°r = -179.06 kJ