1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Free_Kalibri [48]
3 years ago
9

The electronic sign that showed the speed of motorists was installed on a road.the line plots below show the speeds of some moto

rists before and after the sign was installed. based on these data which statement is true about the speeds of motorists after the sign was installed?
Mathematics
1 answer:
stealth61 [152]3 years ago
8 0

Answer:

The correct option is;

A. The mean speed and the range of the speeds of the motorists decreased

Step-by-step explanation:

Here we have the speeds given as

                  Before Sign Installation

Speed                                                   Frequency

20                                                             1

24                                                             1

25                                                             4

30                                                             2

35                                                             2

38                                                             1

40                                                             1

∑ 212                                                        12

Mean = 17.67

Median (25 + 30)/2 = 27.5

Range  = 40 - 20 = 20

                     After  Sign Installation

Speed                                                   Frequency

20                                                             1

22                                                             1

25                                                             4

28                                                             1

30                                                             3

35                                                             2

∑ 160                                                        12

Mean = 160/12 = 13.33

Median = (25+28)/2 = 26.5

Range  = 35 - 20 = 15.

Therefore, the mean speed and the range of the speeds of the motorists decreased

You might be interested in
Problem
densk [106]

Answer:

what.....

Step-by-step explanation:

5 0
4 years ago
Multi step equations <br> 4-5x=29
Gemiola [76]

Answer: x = -5

Step-by-step explanation:

1) subtract 4 from both sides (-5x = 25)

2) divide -5 from both sides (x = -5)

Then you have the answer!

6 0
4 years ago
<img src="https://tex.z-dn.net/?f=%5Clim_%7Bx%5Cto%20%5C%200%7D%20%5Cfrac%7B%5Csqrt%7Bcos2x%7D-%5Csqrt%5B3%5D%7Bcos3x%7D%20%7D%7
salantis [7]

Answer:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{1}{2}

General Formulas and Concepts:

<u>Calculus</u>

Limits

Limit Rule [Variable Direct Substitution]:                                                                     \displaystyle \lim_{x \to c} x = c

L'Hopital's Rule

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

We are given the limit:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)}

When we directly plug in <em>x</em> = 0, we see that we would have an indeterminate form:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{0}{0}

This tells us we need to use L'Hoptial's Rule. Let's differentiate the limit:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \displaystyle  \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)}

Plugging in <em>x</em> = 0 again, we would get:

\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \frac{0}{0}

Since we reached another indeterminate form, let's apply L'Hoptial's Rule again:

\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)}

Substitute in <em>x</em> = 0 once more:

\displaystyle \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)} = \frac{1}{2}

And we have our final answer.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

6 0
3 years ago
What is the length of leg s of the triangle below?
vekshin1

Answer:

4 units

Step-by-step explanation:

Let ABC be isosceles right angled ∆ right angled at B

By Pythagoras theorem,

AC² = AB² + BC²

(√32)² = 4² + s²

32 = 16 + s²

s² = 32 - 16

s² = 16

s = √16

s = 4 units.

Therefore s = 4 units

Hope it helps...

6 0
3 years ago
Find the slope of the line from the table below
bezimeni [28]

Answer:

m = -10

Step-by-step explanation:

m = y2 - y1 / x2 - x1

m = 60-50 / -2 - -1

m = 10/ -1

m = -10

7 0
3 years ago
Read 2 more answers
Other questions:
  • Solve 2+(6*5)-8, I have no clue the "*" is.
    6·2 answers
  • HELP ME PLEASE IM LOST I NEED YOU TO EXPLAIN ON HOW TO DO THIS PROBLEM!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    10·2 answers
  • Please help?! No explanation needed. Just help asap!
    12·1 answer
  • in the 6th grade, 48 students brought a ham and cheese sandwich for lunch. if this number represents 32% of the total of student
    13·1 answer
  • Write the equation for the following relation. Include all of your work in your final answer.
    13·1 answer
  • There are 18 football teams in a league,
    11·1 answer
  • Please help, WILL GET BRAINLIEST​
    15·1 answer
  • The sum of two numbers is 84. The difference of the two numbers is 32. What are the two numbers.
    8·2 answers
  • Which equations have a greater unit rate than the rate represented in the table.
    5·1 answer
  • What is the equation of the line?<br> I’LL GIVE BRAINLIEST
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!