Answer:
P(G) = 0.55
the probability of getting an offspring pea that is green. Is 0.55.
Is the result reasonably close to the value of three fourths that was expected?
No
Expected P(G)= three fourths = 3/4 = 0.75
Estimated P(G) = 0.55
Estimated P(G) is not reasonably close to 0.75
Step-by-step explanation:
Given;
Number of green peas offspring
G = 450
Number of yellow peas offspring
Y = 371
Total number of peas offspring
T = 450+371 = 821
the probability of getting an offspring pea that is green is;
P(G) = Number of green peas offspring/Total number of peas offspring
P(G) = G/T
Substituting the values;
P(G) = 450/821
P(G) = 0.548112058465
P(G) = 0.55
the probability of getting an offspring pea that is green. Is 0.55.
Is the result reasonably close to the value of three fourths that was expected?
No
Expected P(G)= three fourths = 3/4 = 0.75
Estimated P(G) = 0.55
Estimated P(G) is not reasonably close to 0.75
The answer is 4.27 if it’s the blue painted ones
Sin(60) = ¹/₂√3
cos(60) = ¹/₂
tan(60) = √3
The answer is D.
It would be 1 inch and 15 degree arc due to the act that the radius is half.
Don’t worry someone will come along and help you. Good luck and I hope you get it right