Answer:
both kinds of tickets are $5 each
Step-by-step explanation:
Let s and c represent the dollar costs of a senior ticket and child ticket, respectively. The problem statement describes two relationships:
12s + 5c = 85 . . . . . revenue from the first day of sales
6s + 9c = 75 . . . . . . revenue from the second day of sales
Double the second equation and subtract the first to eliminate the s variable.
2(6s +9c) -(12s +5c) = 2(75) -(85)
13c = 65 . . . . . simplify
65/13 = c = 5 . . . . . divide by the coefficient of c
Substitute this value into either equation. Let's use the second one.
6s + 9·5 = 75
6s = 30 . . . . . . . subtract 45
30/6 = s = 5 . . . divide by the coefficient of s
The price of a senior ticket is $5; the price of a child ticket is $5.
The total will be 08.99 because that’s how you divide and he is winning
0.05, 0.5, 5/8
5/8 is greater than 0.5 since 0.5 = 1/2 which equals 4/8
<h3>The solution is (x, y) = (3, -24)</h3>
<em><u>Solution:</u></em>
<em><u>Given system of equations are:</u></em>
-3x - y = 15 -------- eqn 1
y = -8x ------ eqn 2
We have to find solution of (x, y)
We can solve by substitution method
<em><u>Substitute eqn 2 in eqn 1</u></em>
-3x - (-8x) = 15
-3x + 8x = 15
5x = 15
Divide both sides by 5
<h3>x = 3</h3>
Substitute x = 3 in eqn 2
y = -8(3)
<h3>y = -24</h3>
Thus solution is (x, y) = (3, -24)
Multiplying a function by a constant factor (10 in this example) stretches the graph relative to the x-axis. If f(x) would be a sine, you would blow up the amplitude from -1..+1 to -10..+10.