1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nika2105 [10]
3 years ago
11

HELP NEEDED. 37 POINTSI just need the answers

Mathematics
1 answer:
Juli2301 [7.4K]3 years ago
8 0

Answer:

Part 1) P=[2\sqrt{29}+\sqrt{18}]\ units or P=15.01\ units

Part 2) P=2[\sqrt{20}+\sqrt{45}]\ units or P=22.36\ units

Part 3) P=4[\sqrt{13}]\ units or P=14.42\ units

Part 4) P=[19+\sqrt{17}]\ units or P=23.12\ units

Part 5) P=2[\sqrt{17}+\sqrt{68}]\ units or P=24.74\ units

Part 6) A=36\ units^{2}

Part 7) A=20\ units^{2}

Part 8) A=16\ units^{2}

Part 9) A=10.5\ units^{2}

Part 10) A=6.05\ units^{2}

Step-by-step explanation:

we know that

The formula to calculate the distance between two points is equal to

d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}

Part 1) we have the triangle ABC

A(0,3),B(5,1),C(2,-2)

step 1

Find the distance AB

A(0,3),B(5,1)

substitute in the formula

AB=\sqrt{(1-3)^{2}+(5-0)^{2}}

AB=\sqrt{(-2)^{2}+(5)^{2}}

AB=\sqrt{29}\ units

step 2

Find the distance BC

B(5,1),C(2,-2)

substitute in the formula

BC=\sqrt{(-2-1)^{2}+(2-5)^{2}}

BC=\sqrt{(-3)^{2}+(-3)^{2}}

BC=\sqrt{18}\ units

step 3

Find the distance AC

A(0,3),C(2,-2)

substitute in the formula

AC=\sqrt{(-2-3)^{2}+(2-0)^{2}}

AC=\sqrt{(-5)^{2}+(2)^{2}}

AC=\sqrt{29}\ units

step 4

Find the perimeter

The perimeter is equal to

P=AB+BC+AC

substitute

P=[\sqrt{29}+\sqrt{18}+\sqrt{29}]\ units

P=[2\sqrt{29}+\sqrt{18}]\ units

or

P=15.01\ units

Part 2) we have the rectangle ABCD

A(-4,-4),B(-2,0),C(4,-3),D(2,-7)

Remember that in a rectangle opposite sides are congruent

step 1

Find the distance AB

A(-4,-4),B(-2,0)

substitute in the formula

AB=\sqrt{(0+4)^{2}+(-2+4)^{2}}

AB=\sqrt{(4)^{2}+(2)^{2}}

AB=\sqrt{20}\ units

step 2

Find the distance BC

B(-2,0),C(4,-3)

substitute in the formula

BC=\sqrt{(-3-0)^{2}+(4+2)^{2}}

BC=\sqrt{(-3)^{2}+(6)^{2}}

BC=\sqrt{45}\ units

step 3

Find the perimeter

The perimeter is equal to

P=2[AB+BC]

substitute

P=2[\sqrt{20}+\sqrt{45}]\ units

or

P=22.36\ units

Part 3) we have the rhombus ABCD

A(-3,3),B(0,5),C(3,3),D(0,1)

Remember that  in a rhombus all sides are congruent

step 1

Find the distance AB

A(-3,3),B(0,5)

substitute in the formula

AB=\sqrt{(5-3)^{2}+(0+3)^{2}}

AB=\sqrt{(2)^{2}+(3)^{2}}

AB=\sqrt{13}\ units

step 2

Find the perimeter

The perimeter is equal to

P=4[AB]

substitute

P=4[\sqrt{13}]\ units

or

P=14.42\ units

Part 4) we have the quadrilateral ABCD

A(-2,-3),B(1,1),C(7,1),D(6,-3)

step 1

Find the distance AB

A(-2,-3),B(1,1)

substitute in the formula

AB=\sqrt{(1+3)^{2}+(1+2)^{2}}

AB=\sqrt{(4)^{2}+(3)^{2}}

AB=5\ units

step 2

Find the distance BC

B(1,1),C(7,1)

substitute in the formula

BC=\sqrt{(1-1)^{2}+(7-1)^{2}}

BC=\sqrt{(0)^{2}+(6)^{2}}

BC=6\ units

step 3

Find the distance CD

C(7,1),D(6,-3)

substitute in the formula

CD=\sqrt{(-3-1)^{2}+(6-7)^{2}}

CD=\sqrt{(-4)^{2}+(-1)^{2}}

CD=\sqrt{17}\ units

step 4

Find the distance AD

A(-2,-3),D(6,-3)

substitute in the formula

AD=\sqrt{(-3+3)^{2}+(6+2)^{2}}

AD=\sqrt{(0)^{2}+(8)^{2}}

AD=8\ units

step 5

Find the perimeter

The perimeter is equal to

P=AB+BC+CD+AD

substitute

P=[5+6+\sqrt{17}+8]\ units

P=[19+\sqrt{17}]\ units

or

P=23.12\ units

Part 5) we have the quadrilateral ABCD

A(-1,5),B(3,6),C(5,-2),D(1,-3)

step 1

Find the distance AB

A(-1,5),B(3,6)

substitute in the formula

AB=\sqrt{(6-5)^{2}+(3+1)^{2}}

AB=\sqrt{(1)^{2}+(4)^{2}}

AB=\sqrt{17}\ units

step 2

Find the distance BC

B(3,6),C(5,-2)

substitute in the formula

BC=\sqrt{(-2-6)^{2}+(5-3)^{2}}

BC=\sqrt{(-8)^{2}+(2)^{2}}

BC=\sqrt{68}\ units

step 3

Find the distance CD

C(5,-2),D(1,-3)

substitute in the formula

CD=\sqrt{(-3+2)^{2}+(1-5)^{2}}

CD=\sqrt{(-1)^{2}+(-4)^{2}}

CD=\sqrt{17}\ units

step 4

Find the distance AD

A(-1,5),D(1,-3)

substitute in the formula

AD=\sqrt{(-3-5)^{2}+(1+1)^{2}}

AD=\sqrt{(-8)^{2}+(2)^{2}}

AD=\sqrt{68}\ units

step 5

Find the perimeter

The perimeter is equal to

P=\sqrt{17}+\sqrt{68}+\sqrt{17}+\sqrt{68}

substitute

P=2[\sqrt{17}+\sqrt{68}]\ units

or

P=24.74\ units

<h3>The complete answer in the attached file</h3>

Download docx
You might be interested in
The length of a rectangle is six times its width. If the rectangle is 600 yd^2 find its perimeter
vovangra [49]

Answer:

8400 yd^2

Step-by-step explanation:

600x 6 because its six times

3600

L+L+W+W=p

8400 yd ^2

4 0
3 years ago
Find the volume of the cylinder in terms of π and to the nearest tenth.
Anastaziya [24]
The answer is 18pi
3 \times 3 \times 2 \times \pi = 18\pi




good luck
5 0
3 years ago
Find the difference.
leonid [27]

\text{Solve:}\\\\(5x^2 + 2x + 11) - (7 + 4x - 2x^2)\\\\5x^2+2x+11-7-4x+2x^2\\\\7x^2+2x+11-7-4x\\\\7x^2-2x+11-7\\\\\boxed{7x^2-2x+4}

3 0
4 years ago
Read 2 more answers
I need help please :)
EleoNora [17]

Answer:

x is any integer except for -1

Step-by-step explanation:

If you substitute -1 for x, the denominator value would be 0, or undefined.

For this reason, x cannot be -1, which is mathematically known as an extraneous value.

8 0
3 years ago
Enter an
bekas [8.4K]

Answer:

9 - n

Step-by-step explanation:

could you make me brainliest if this helped? :)

6 0
3 years ago
Other questions:
  • 35b5 + 20ab3 + 20a2b2 by 5b2.
    14·1 answer
  • What is (x<img src="https://tex.z-dn.net/?f=%202x%5E%7B2%7D%20%2Fx%20x%5E%7B2%7D%20" id="TexFormula1" title=" 2x^{2} /x x^{2} "
    15·1 answer
  • Identify the pattern for the following sequence. Find the next three terms in the sequence.
    11·1 answer
  • Use the Fares below.
    14·1 answer
  • roger average 3 hits for every 12 times he is at bat at his. rate how many must he bat to hit 12 hits
    10·1 answer
  • Simplify. 3/4−4z+5/4z−1/2+1/2z Enter your answer in the box.<br><br><br> please help
    12·2 answers
  • SNOG PLEASE HELP! (x-1)(y+8)
    14·2 answers
  • Find the slope of the line that passes through the points A (-1,5) and B (7,1).
    13·1 answer
  • What’s the answers 15 points
    12·1 answer
  • the length of one side of the base of a square pyramid is 15 cm. the height of each face is 40 cm. what is the surface area of t
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!