The two parabolas intersect for

and so the base of each solid is the set

The side length of each cross section that coincides with B is equal to the vertical distance between the two parabolas,
. But since -2 ≤ x ≤ 2, this reduces to
.
a. Square cross sections will contribute a volume of

where ∆x is the thickness of the section. Then the volume would be

where we take advantage of symmetry in the first line.
b. For a semicircle, the side length we found earlier corresponds to diameter. Each semicircular cross section will contribute a volume of

We end up with the same integral as before except for the leading constant:

Using the result of part (a), the volume is

c. An equilateral triangle with side length s has area √3/4 s², hence the volume of a given section is

and using the result of part (a) again, the volume is

Answer:
use google graph:)
Step-by-step explanation:
The edge length of the cube is 0.4
<em>Greetings from Brasil...</em>
In a trigonometric function
F(X) = ±UD ± A.COS(Px + LR)
UD - move the graph to Up or Down (+ = up | - = down)
A - amplitude
P - period (period = 2π/P)
LR - move the graph to Left or Right (+ = left | - = right)
So:
A) F(X) = COS(X + 1)
standard cosine graph with 1 unit shift to the left
B) F(X) = COS(X) - 1 = -1 + COS(X)
standard cosine graph with 1 unit down
C) F(X) = COS(X - 1)
standard cosine graph with shift 1 unit to the right
D) F(X) = SEN(X - 1)
standard Sine graph with shift 1 unit to the right
Observing the graph we notice the sine function shifted 1 unit to the right, then
<h3>Option D</h3>
<em>(cosine star the curve in X and Y = zero. sine start the curve in Y = 1)</em>