Answer: 233 people per thousand
Step-by-step explanation:
Using extrapolation method,
if 150/k in 1950,
200/k in 1990,
275/k in 2020,
2003 lies in between 1990 and 2020. So, you extrapolate the values of 200/k and 275/k for the years respectively.
Therefore,
(2003 - 1990)/(2020 - 2003) = (x - 200)/(275 - x)
Where x is the number of retirees per thousand for 2003
Making x the subject of relation in the above equation.
Cross multiply the equation above;
(2003 - 1990)(275-x) = (2020 - 2003)(x - 200)
13(275 - x) = 17(x-200)
3575 - 13x = 17x - 3400
Collect the like terms
3575+3400 = 17x + 13x
30x = 6975
x = 6975/30
x = 232.5
x = 233 people per thousand to the nearest integer
Solution for f(g(5)):
The notation f(g(5)) or (f • g)(5) means that we first plug 5 into the function g(x), simplify, then plug the answer that we got to f(x). We will do this step-by-step:
Step 1: Plugging 5 to g(x)

Step 2: Plugging the answer to f(x)

ANSWER: f(g(5)) is equal to 3.
Domain:
For the function f(g(x)), we can find the domain by analyzing the domains of each individual functions separately and excluding certain values depending on the restrictions from the outermost function.
However, since both functions have all real numbers as its domain, we will not need to do any exclusion anymore.
ANSWER: The domain of the function is all real numbers.
Answer:
(a) 17°
(b) 78°
Step-by-step explanation:
(a) sin A= 0.2896
to calculate for "A" check for sin inverse of 0.2896
A= sin^-1(0.2896) = 16.83
to the nearest degree A= 17°
(b) tan A = 4.7046
A= tan^-1(4.7046)
A = 77.99
to the nearest degree A = 78°
Answer: the answer is linear pair
Step-by-step explanation: