In matrix form, the system is given by

I'll use G-J elimination. Consider the augmented matrix
![\left[ \begin{array}{ccc|c} -1 & 1 & -1 & -20 \\ 2 & -1 & 1 & 29 \\ 3 & 2 & 1 & 29 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%20-1%20%26%201%20%26%20-1%20%26%20-20%20%5C%5C%202%20%26%20-1%20%26%201%20%26%2029%20%5C%5C%203%20%26%202%20%26%201%20%26%2029%20%5Cend%7Barray%7D%20%5Cright%5D)
• Multiply through row 1 by -1.
![\left[ \begin{array}{ccc|c} 1 & -1 & 1 & 20 \\ 2 & -1 & 1 & 29 \\ 3 & 2 & 1 & 29 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%20-1%20%26%201%20%26%2020%20%5C%5C%202%20%26%20-1%20%26%201%20%26%2029%20%5C%5C%203%20%26%202%20%26%201%20%26%2029%20%5Cend%7Barray%7D%20%5Cright%5D)
• Eliminate the entries in the first column of the second and third rows. Combine -2 (row 1) with row 2, and -3 (row 1) with row 3.
![\left[ \begin{array}{ccc|c} 1 & -1 & 1 & 20 \\ 0 & 1 & -1 & -11 \\ 0 & 5 & -2 & -31 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%20-1%20%26%201%20%26%2020%20%5C%5C%200%20%26%201%20%26%20-1%20%26%20-11%20%5C%5C%200%20%26%205%20%26%20-2%20%26%20-31%20%5Cend%7Barray%7D%20%5Cright%5D)
• Eliminate the entry in the second column of the third row. Combine -5 (row 2) with row 3.
![\left[ \begin{array}{ccc|c} 1 & -1 & 1 & 20 \\ 0 & 1 & -1 & -11 \\ 0 & 0 & 3 & 24 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%20-1%20%26%201%20%26%2020%20%5C%5C%200%20%26%201%20%26%20-1%20%26%20-11%20%5C%5C%200%20%26%200%20%26%203%20%26%2024%20%5Cend%7Barray%7D%20%5Cright%5D)
• Multiply row 3 by 1/3.
![\left[ \begin{array}{ccc|c} 1 & -1 & 1 & 20 \\ 0 & 1 & -1 & -11 \\ 0 & 0 & 1 & 8 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%20-1%20%26%201%20%26%2020%20%5C%5C%200%20%26%201%20%26%20-1%20%26%20-11%20%5C%5C%200%20%26%200%20%26%201%20%26%208%20%5Cend%7Barray%7D%20%5Cright%5D)
• Eliminate the entry in the third column of the second row. Combine row 2 with row 3.
![\left[ \begin{array}{ccc|c} 1 & -1 & 1 & 20 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 8 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%20-1%20%26%201%20%26%2020%20%5C%5C%200%20%26%201%20%26%200%20%26%20-3%20%5C%5C%200%20%26%200%20%26%201%20%26%208%20%5Cend%7Barray%7D%20%5Cright%5D)
• Eliminate the entries in the second and third columns of the first row. Combine row 1 with row 2 and -1 (row 3).
![\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 9 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 8 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%200%20%26%209%20%5C%5C%200%20%26%201%20%26%200%20%26%20-3%20%5C%5C%200%20%26%200%20%26%201%20%26%208%20%5Cend%7Barray%7D%20%5Cright%5D)
Then the solution to the system is

If you want to use G elimination and substitution, you'd stop at the step with the augmented matrix
![\left[ \begin{array}{ccc|c} 1 & -1 & 1 & 20 \\ 0 & 1 & -1 & -11 \\ 0 & 0 & 1 & 8 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%20-1%20%26%201%20%26%2020%20%5C%5C%200%20%26%201%20%26%20-1%20%26%20-11%20%5C%5C%200%20%26%200%20%26%201%20%26%208%20%5Cend%7Barray%7D%20%5Cright%5D)
The third row tells us that
. Then in the second row,

and in the first row,

Answer: −1.409
Step-by-step explanation:
Probability of drawing 3 hearts: 13/52 * 12/51 * 11/50 = 0.013
Probability of drawing 3 black cards: 26/52 * 25/51 * 24/50 = 0.118
Probability of other draw: 1 - 0.013 - 0.118 = 0.869
0.013 * (50 - 5) = 0.585
0.118 * (25 - 5) = 2.353
0.869 * (0 - 5) = -4.347
Expected value: 0.585+ 2.353 - 4.347 = -1.409
408,017 is in standard form and
400,000+8,000+10+7=408,017 is expanded form
sixty five thousand and fifty eight is word form
60,000+5,000+50+8=65͵058 is expanded form
Answer:
in 2018 it will be 8.09 million