(-1.2,-2.0) and (1.9,2.2) are the best approximations of the solutions to this system.
Option B
<u>Step-by-step explanation:</u>
Here, we have a graph of two functions from which we need to find the approximate value of common solutions. Let's find this:
First look at where we have intersection points, In first quadrant & in third quadrant.
<u>At first quadrant:</u>
Draw perpendicular lines from x-axis & y-axis from this point . After doing this we can clearly see that the perpendicular lines cut x-axis at x=1.9 and y-axis at y=2.2. So, one point is (1.9,2.2)
<u>At Third quadrant:</u>
Draw perpendicular lines from x-axis & y-axis from this point. After doing this we can clearly see that the perpendicular lines cut x-axis at x=-1.2 and y-axis at y= -2.0. So, other point is (-1.2,-2.0).
Answer:
A) x=2
Step-by-step explanation:
Hi there!
When we have an equation standard form...

...the formula of the discriminant is
D = b^2 - 4ac
When
D > 0 we have two real solutions
D = 0 we have one real solutions
D < 0 we don't have real solutions
1.) Find the value of the discriminant and the the number of real solutions of
x^2-8x+7=0
Plug in the values from the equation into the formula of the discriminant

D > 0 and therefore we have two real solutions.
2.) Find the value of the discriminant and the number of real solutions of
2x^2+4x+2=0
Again, plug in the values from the equation into the formula of the discriminant.

D = 0 and therefore we have one real solution.
~ Hope this helps you.