Given:
Set A: 1 4 4 4 5 5 5 8
Mean: 4.5
Standard dev: 1.9
 
Set B:
Mean: 4.5
Standard dev: 2.45
 
% =  90  
Set A:
Standard Error, SE = s/ √n =    1.9/√8
= 0.67  
Degrees of freedom = n - 1 = 
 8 -1 =  7   
t- score =  1.89457861
<span>
<span><span>
<span>
 
</span>
</span>
</span></span>
Width of the confidence interval = t * SE =     1.89457861*
0.67 = 1.272685913 
Lower Limit of the confidence interval = x-bar - width
=      4.5 - 1.272685913 = 3.23
Upper Limit of the confidence interval = x-bar + width
=      4.5 + 1.272685913 = 5.77
The 90% confidence
interval is [3.23, 5.77]
 
Set B:
Standard Error, SE = s/ √n =    2.45/√8
= 0.87  
Degrees of freedom = n - 1 = 
 8 -1 = 7   
t- Score =  1.89457861
<span>
<span><span>
<span>
 
</span>
</span>
</span></span>
Width of the confidence interval = t * SE =     1.89457861*
0.87 = 1.641094994 
Lower Limit of the confidence interval = x-bar - width
=      4.5 - 1.641094994 = 2.86
Upper Limit of the confidence interval = x-bar + width
=      4.5 + 1.641094994 = 6.14
The 90% confidence
interval is [2.86, 6.14]
 
<span>We can obviously see that sample
B has more variation in the scores than sample A. The fact that the standard
deviation is 2.45 for B and 1.9 for A). Therefore, they yield dissimilar
confidence intervals even though they have the same mean and range.</span>