1.) First plug in the values for m and A:

--> 
Isolate b: 
b = 1999
So your answer is the first option.
2.) Admission costs $5.25, so even if you don't go on any rides, you will still have to pay $5.25. This means that for this problem, 5.25 will be the b value. If each ride costs $2.50, then this means it is $2.50x for the cost of x rides. The total cost will then be
.
Answer:

Step-by-step explanation:
To calculate an area of a rectangle, use the formula A=l*w. We know the width is 7m greater than the length. So w = 7 + x. So the area is A= (7+x)*x.
We also know the area is 170. Substitute this value for A and solve.
The answer is 90 I think I multiplied 6*3 =18 *4 =72( for every rectangle )then 3*3 =9 for the square (2 squares ) 9*2=18
<span>An equation is a statement of equality „=‟ between two expression for particular</span>values of the variable. For example5x + 6 = 2, x is the variable (unknown)The equations can be divided into the following two kinds:Conditional Equation:<span>It is an equation in which two algebraic expressions are equal for particular</span>value/s of the variable e.g.,<span>a) 2x <span>= <span>3 <span>is <span>true <span>only <span>for <span>x <span>= 3/2</span></span></span></span></span></span></span></span></span><span> b) x</span>2 + x – <span> 6 = 0 is true only for x = 2, -3</span> Note: for simplicity a conditional equation is called an equation.Identity:<span>It is an equation which holds good for all value of the variable e.g;</span><span>a) (a <span>+ <span>b) x</span></span></span><span>ax + bx is an identity and its two sides are equal for all values of x.</span><span> b) (x + 3) (x + 4)</span> x2<span> + 7x + 12 is also an identity which is true for all values of x.</span>For convenience, the symbol „=‟ shall be used both for equation and identity. <span>1.2 Degree <span>of <span>an Equation:</span></span></span>The degree of an equation is the highest sum of powers of the variables in one of theterm of the equation. For example<span>2x <span>+ <span>5 <span>= <span>0 1</span></span></span></span></span>st degree equation in single variable<span>3x <span>+ <span>7y <span>= <span>8 1</span></span></span></span></span>st degree equation in two variables2x2 – <span> <span>7x <span>+ <span>8 <span>= <span>0 2</span></span></span></span></span></span>nd degree equation in single variable2xy – <span> <span>7x <span>+ <span>3y <span>= <span>2 2</span></span></span></span></span></span>nd degree equation in two variablesx3 – 2x2<span> + <span>7x + <span>4 = <span>0 3</span></span></span></span>rd degree equation in single variablex2<span>y <span>+ <span>xy <span>+ <span>x <span>= <span>2 3</span></span></span></span></span></span></span>rd degree equation in two variables<span>1.3 Polynomial <span>Equation <span>of <span>Degree n:</span></span></span></span>An equation of the formanxn + an-1xn-1 + ---------------- + a3x3 + a2x2 + a1x + a0<span> = 0--------------(1)</span>Where n is a non-negative integer and an<span>, a</span>n-1, -------------, a3<span>, a</span>2<span>, a</span>1<span>, a</span>0 are realconstants, is called polynomial equation of degree n. Note that the degree of theequation in the single variable is the highest power of x which appear in the equation.Thus3x4 + 2x3 + 7 = 0x4 + x3 + x2<span> <span>+ <span>x <span>+ <span>1 <span>= <span>0 , x</span></span></span></span></span></span></span>4 = 0<span>are <span>all <span>fourth-degree polynomial equations.</span></span></span>By the techniques of higher mathematics, it may be shown that nth degree equation ofthe form (1) has exactly n solutions (roots). These roots may be real, complex or amixture of both. Further it may be shown that if such an equation has complex roots,they occur in pairs of conjugates complex numbers. In other words it cannot have anodd number of complex roots.<span>A number <span>of the <span>roots may <span>be equal. Thus <span>all four <span>roots of x</span></span></span></span></span></span>4 = 0<span>are <span>equal <span>which <span>are <span>zero, <span>and <span>the <span>four <span>roots <span>of x</span></span></span></span></span></span></span></span></span></span>4 – 2x2 + 1 = 0<span>Comprise two pairs of equal roots (1, 1, -1, -1)</span>