1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
givi [52]
3 years ago
10

Plz help it’s passed due!

Physics
1 answer:
pickupchik [31]3 years ago
5 0
It is b 9.1 :) have a nice day
You might be interested in
1.si un automovil de 3000 kg se desplaza a 40 m/s su energía cinética es igual a
Mila [183]
The answer for this is b 3.500.000j
6 0
3 years ago
A force did 80 j of work on an object in 4 m how big was the force
yanalaym [24]

Work = (force) x (distance)

80 J = (force) x (4 m)

Force = (80 J) / (4 m)  =  20 N

That's IF the force was in the same direction as the 4m of motion.
If the force was kind of slanted, then it had to be stronger, and
it had a component of 20N in the direction of the motion.

3 0
3 years ago
You shoot an arrow into the air. Two seconds later (2.00 s) the arrow has gone straight upward to a height of 35.0 m above its l
sdas [7]

This question can be solved by using the equations of motion.

a) The initial speed of the arrow is was "9.81 m/s".

b) It took the arrow "1.13 s" to reach a height of 17.5 m.

a)

We will use the second equation of motion to find out the initial speed of the arrow.

h= v_it + \frac{1}{2}gt^2\\

where,

vi = initial speed = ?

h = height = 35 m

t = time interval = 2 s

g = acceleration due to gravity = 9.81 m/s²

Therefore,

35\ m = (v_i)(2\ s)+\frac{1}{2}(9.81\ m/s^2)(2\ s)^2\\\\v_i(2\ s)=19.62\ m\\\\v_i = \frac{19.62\ m}{2\ s}

<u>vi =  9.81 m/s</u>

b)

To find the time taken by the arrow to reach 17.5 m, we will use the second equation of motion again.

h= v_it + \frac{1}{2}gt^2\\

where,

g = acceleration due to gravity = 9.81 m/s²

h = height = 17.5 m

vi = initial speed = 9.81 m/s

t = time = ?

Therefore,

17.5 = (9.81)t+\frac{1}{2}(9.81)t^2\\4.905t^2+9.81t-17.5=0

solving this quadratic equation using the quadratic formula, we get:

t = -3.13 s (OR) t = 1.13 s

Since time can not have a negative value.

Therefore,

<u>t = 1.13 s</u>

Learn more about equations of motion here:

brainly.com/question/20594939?referrer=searchResults

The attached picture shows the equations of motion in the horizontal and vertical directions.

4 0
2 years ago
Two identical balls move directly toward each other with equal speeds. how will the balls move if they collide and stick togethe
Citrus2011 [14]
The momentum of both the identical balls would eventually be transferred to one another when it comes to a point wherein they will collide. In addition, the phenomenon is called an elastic collision wherein both the momentum and energy of the system would considered to be conserved.
7 0
3 years ago
Can you hear it? In the cartoon space rocket, why do you think you would not be able to hear the whoosh of the rocket engine in
Brums [2.3K]

Answer:

Because space is a void with no air flow

Explanation:

7 0
3 years ago
Other questions:
  • Two large, flat, horizontally oriented plates are parallel to each other, a distance d apart. Half way between the two plates th
    11·1 answer
  • Which statement supports one of Dalton's contributions to the atomic theory? Select one: a. The element nitrogen is made up of c
    5·1 answer
  • A person could jump futher on ___ than on ____
    15·2 answers
  • What are two main factors that affect how quickly a coastline erodes?
    14·1 answer
  • What is the formula for calculating the efficiency of a heat engine?
    11·1 answer
  • This power is generated from a renewable resource; however, it still has some of the negative effects associated with using powe
    6·2 answers
  • Suppose you increase your walking speed from 4 m/s to 12 m/s in a period of 2 s. What is your acceleration?
    9·2 answers
  • a 500-kg car is parked 20 M away from a 600 kg truck. what is the gravitational force between the two cars? Show the 4 steps.​
    6·2 answers
  • A
    9·1 answer
  • A sinusoidal wave in a string is described by the wave functiony=0.150 sin (0.800x - 50.0t)where x and y are in meters and t is
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!