Answer: $3,166
Step-by-step explanation:
10000 digits can be used for 4 digit A.T.M code.
<u>Solution:</u>
Given that A.T.M required 4 digit codes using the digits 0 to 9.
Need to determine how many four digit code can be used.
We are assuming that number starting with 0 are also valid ATM codes that means 0789 , 0089 , 0006 and 0000 are also valid A.T.M codes.
Now we have four places to be filled by 0 to 9 that is 10 numbers
Also need to keep in mind that repetition is allowed in this case means if 9 is selected at thousands place than also it is available for hundreds, ones or tens place .
First digit can be selected in 10 ways that is from 0 to 9.
After selecting first digit, second digit can be selected in 10 ways that is 0 to 9 and same holds true for third and fourth digit.
So number of ways in which four digit number is created = 10 x 10 x 10 x 10 = 10000 ways
Hence 10000 digits can be used for 4 digit A.T.M code.
Answer:
To solve the first inequality, you need to subtract 6 from both sides of the inequality, to obtain 4n≤12. This can then be cancelled down to n≤3 by dividing both sides by 4. To solve the second inequality, we first need to eliminate the fraction by multiplying both sides of the inequality by the denominator, obtaining 5n>n^2+4. Since this inequality involves a quadratic expression, we need to convert it into the form of an^2+bn+c<0 before attempting to solve it. In this case, we subtract 5n from both sides of the inequality to obtain n^2-5n+4<0. The next step is to factorise this inequality. To factorise we must find two numbers that can be added to obtain -5 and that can be multiplied to obtain 4. Quick mental mathematics will tell you that these two numbers are -4 and -1 (for inequalities that are more difficult to factorise mentally, you can just use the quadratic equation that can be found in your data booklet) so we can write the inequality as (n-4)(n-1)<0. For inequalities where the co-efficient of n^2 is positive and the the inequality is <0, the range of n must be between the two values of n whereby the factorised expresion equals zero, which are n=1 and n=4. Therefore, the solution is 1<n<4 and we can check this by substituting in n=3, which satisfies the inequality since (3-4)(3-1)=-2<0. Since n is an integer, the expressions n≤3 and n<4 are the same. Therefore, we can write the final answer as either 1<n<4, or n>1 and n≤3.
Answer:
14
Step-by-step explanation:
19 - 5 = 14
It is in the thousands place.