1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
soldi70 [24.7K]
3 years ago
14

Amir can travel 121.72 miles on 6.8 gallons of gas.

Mathematics
1 answer:
ASHA 777 [7]3 years ago
4 0
The unit consumption of gas can be obtained by dividing the total distance traveled in miles by the total gallons of gas consumed by the trip. This is shown below:

121.72 miles / 6.8 gallons = 17.9

Therefore, on a gallon of gas, Amir can travel 17.9 miles, which is letter B among the choices.
You might be interested in
1.) Is f(x)=2x^3 + 2x and odd function
Amiraneli [1.4K]

Answer:

yes, no, no

Step-by-step explanation:

For odd functions : −f(x) = f(−x) for all x

For even functions :f(x) = f(−x) for all x

1) -f(x)= -2x^3 -2x

f(-x) = -2x^3-2x

yes

2 ) f(-x) = 5x^3 -4 ≠ f(x)

no

3  )  f(-x) = -4x -4   ≠ f(x)

no

8 0
3 years ago
Divide.<br> remainder<br> 20) 74
dusya [7]

3 remainder of 7 i fink

Step-by-step explanation:

8 0
3 years ago
For the following integral, find the approximate value of the integral with 4 subdivisions using midpoint, trapezoid, and Simpso
PIT_PIT [208]

Answer:

\textsf{Midpoint rule}: \quad \dfrac{2\pi}{\sqrt[3]{2}}

\textsf{Trapezium rule}: \quad \pi

\textsf{Simpson's rule}: \quad \dfrac{4 \pi}{3}

Step-by-step explanation:

<u>Midpoint rule</u>

\displaystyle \int_{a}^{b} f(x) \:\:\text{d}x \approx h\left[f(x_{\frac{1}{2}})+f(x_{\frac{3}{2}})+...+f(x_{n-\frac{3}{2}})+f(x_{n-\frac{1}{2}})\right]\\\\ \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Trapezium rule</u>

\displaystyle \int_{a}^{b} y\: \:\text{d}x \approx \dfrac{1}{2}h\left[(y_0+y_n)+2(y_1+y_2+...+y_{n-1})\right] \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Simpson's rule</u>

\displaystyle \int_{a}^{b} y \:\:\text{d}x \approx \dfrac{1}{3}h\left(y_0+4y_1+2y_2+4y_3+2y_4+...+2y_{n-2}+4y_{n-1}+y_n\right)\\\\ \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Given definite integral</u>:

\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x

Therefore:

  • a = 0
  • b = 2π

Calculate the subdivisions:

\implies h=\dfrac{2 \pi - 0}{4}=\dfrac{1}{2}\pi

<u>Midpoint rule</u>

Sub-intervals are:

\left[0, \dfrac{1}{2}\pi \right], \left[\dfrac{1}{2}\pi, \pi \right], \left[\pi , \dfrac{3}{2}\pi \right], \left[\dfrac{3}{2}\pi, 2 \pi \right]

The midpoints of these sub-intervals are:

\dfrac{1}{4} \pi, \dfrac{3}{4} \pi, \dfrac{5}{4} \pi, \dfrac{7}{4} \pi

Therefore:

\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x & \approx \dfrac{1}{2}\pi \left[f \left(\dfrac{1}{4} \pi \right)+f \left(\dfrac{3}{4} \pi \right)+f \left(\dfrac{5}{4} \pi \right)+f \left(\dfrac{7}{4} \pi \right)\right]\\\\& = \dfrac{1}{2}\pi \left[\sqrt[3]{\dfrac{1}{2}} +\sqrt[3]{\dfrac{1}{2}}+\sqrt[3]{\dfrac{1}{2}}+\sqrt[3]{\dfrac{1}{2}}\right]\\\\ & = \dfrac{2\pi}{\sqrt[3]{2}}\\\\& = 4.986967483...\end{aligned}

<u>Trapezium rule</u>

\begin{array}{| c | c | c | c | c | c |}\cline{1-6} &&&&&\\ x & 0 & \dfrac{1}{2}\pi & \pi & \dfrac{3}{2} \pi & 2 \pi \\ &&&&&\\\cline{1-6} &&&&& \\y & 0 & 1 & 0 & 1 & 0\\ &&&&&\\\cline{1-6}\end{array}

\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x &  \approx \dfrac{1}{2} \cdot \dfrac{1}{2} \pi \left[(0+0)+2(1+0+1)\right]\\\\& = \dfrac{1}{4} \pi \left[4\right]\\\\& = \pi\end{aligned}

<u>Simpson's rule</u>

<u />

<u />\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x & \approx \dfrac{1}{3}\cdot \dfrac{1}{2} \pi \left(0+4(1)+2(0)+4(1)+0\right)\\\\& = \dfrac{1}{3}\cdot \dfrac{1}{2} \pi \left(8\right)\\\\& = \dfrac{4}{3} \pi\end{aligned}

6 0
2 years ago
A light bulb consumes 1440 watt-hours per day. How many watt-hours does it consume in 4 days and 6 hours?
zzz [600]

Answer:

4845

Step-by-step explanation:

1140/24 hours in a day = 47.5 watt-hours/hour

(1140 x 4 days) + (47.5 watt-hours/hour x 6) = 4845

3 0
4 years ago
Algebra 2 Quiz #1
Aloiza [94]

Answer:

2x-3y

Step-by-step explanation:

4 0
4 years ago
Other questions:
  • A model of Boeing 777 airplane has a scale of 1 Inch:4.5 feet. The wingspan of the model plane is 4.5 inches. About how long is
    15·1 answer
  • Please help! Find the surface area of the composite figure
    8·1 answer
  • NEED HELP IM BEGGING YOU PLEASE !!!!!
    5·1 answer
  • 1 Find the probability of drawing a 7 of diamonds. ( enter your answer as a fraction.)
    9·1 answer
  • What is 3.6 as a mixed number
    5·1 answer
  • The temperature falls from 0 degrees to -12.4 degrees in
    5·1 answer
  • There are 60 females in an audience of 150 people. What percent of the audience are MALE?
    14·1 answer
  • I need Help please will give brainly
    14·1 answer
  • What is a similar equation to Ax+By=C
    7·1 answer
  • Which one is the correct answer? Can you please explain your reasoning
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!