1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna11 [10]
3 years ago
11

Which measurement is equivalent to 880 cm?

Mathematics
1 answer:
mylen [45]3 years ago
4 0
28.87 ft, 346.46 in, 9.623 yds
You might be interested in
16x+14y=8 <br> -63x-14y=133
artcher [175]

Answer:

(-3, 4)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

<u>Algebra I</u>

  • Solving systems of equations using substitution/elimination
  • Solving systems of equations by graphing

Step-by-step explanation:

<u>Step 1: Define Systems</u>

16x + 14y = 8

-63x - 14y = 133

<u>Step 2: Solve for </u><em><u>x</u></em>

<em>Elimination</em>

  1. Combine 2 equations:                    -47x = 141
  2. Divide -47 on both sides:               x = -3

<u>Step 3: Solve for </u><em><u>y</u></em>

  1. Define original equation:                    16x + 14y = 8
  2. Substitute in <em>x</em>:                                     16(-3) + 14y = 8
  3. Evaluate multiplication:                       -48 + 14y = 8
  4. Add 48 on both sides:                        14y = 56
  5. Divide 14 on both sides:                      y = 4

<u>Step 4: Graph Systems</u>

<em>Check the solution set.</em>

4 0
2 years ago
The portion of the parabola y²=4ax above the x-axis, where is form 0 to h is revolved about the x-axis. Show that the surface ar
castortr0y [4]

Answer:

See below for Part A.

Part B)

\displaystyle h=\Big(\frac{125}{\pi}+27\Big)^\frac{2}{3}-9\approx7.4614

Step-by-step explanation:

Part A)

The parabola given by the equation:

y^2=4ax

From 0 to <em>h</em> is revolved about the x-axis.

We can take the principal square root of both sides to acquire our function:

y=f(x)=\sqrt{4ax}

Please refer to the attachment below for the sketch.

The area of a surface of revolution is given by:

\displaystyle S=2\pi\int_{a}^{b}r(x)\sqrt{1+\big[f^\prime(x)]^2} \,dx

Where <em>r(x)</em> is the distance between <em>f</em> and the axis of revolution.

From the sketch, we can see that the distance between <em>f</em> and the AoR is simply our equation <em>y</em>. Hence:

r(x)=y(x)=\sqrt{4ax}

Now, we will need to find f’(x). We know that:

f(x)=\sqrt{4ax}

Then by the chain rule, f’(x) is:

\displaystyle f^\prime(x)=\frac{1}{2\sqrt{4ax}}\cdot4a=\frac{2a}{\sqrt{4ax}}

For our limits of integration, we are going from 0 to <em>h</em>.

Hence, our integral becomes:

\displaystyle S=2\pi\int_{0}^{h}(\sqrt{4ax})\sqrt{1+\Big(\frac{2a}{\sqrt{4ax}}\Big)^2}\, dx

Simplify:

\displaystyle S=2\pi\int_{0}^{h}\sqrt{4ax}\Big(\sqrt{1+\frac{4a^2}{4ax}}\Big)\,dx

Combine roots;

\displaystyle S=2\pi\int_{0}^{h}\sqrt{4ax\Big(1+\frac{4a^2}{4ax}\Big)}\,dx

Simplify:

\displaystyle S=2\pi\int_{0}^{h}\sqrt{4ax+4a^2}\, dx

Integrate. We can consider using u-substitution. We will let:

u=4ax+4a^2\text{ then } du=4a\, dx

We also need to change our limits of integration. So:

u=4a(0)+4a^2=4a^2\text{ and } \\ u=4a(h)+4a^2=4ah+4a^2

Hence, our new integral is:

\displaystyle S=2\pi\int_{4a^2}^{4ah+4a^2}\sqrt{u}\, \Big(\frac{1}{4a}\Big)du

Simplify and integrate:

\displaystyle S=\frac{\pi}{2a}\Big[\,\frac{2}{3}u^{\frac{3}{2}}\Big|^{4ah+4a^2}_{4a^2}\Big]

Simplify:

\displaystyle S=\frac{\pi}{3a}\Big[\, u^\frac{3}{2}\Big|^{4ah+4a^2}_{4a^2}\Big]

FTC:

\displaystyle S=\frac{\pi}{3a}\Big[(4ah+4a^2)^\frac{3}{2}-(4a^2)^\frac{3}{2}\Big]

Simplify each term. For the first term, we have:

\displaystyle (4ah+4a^2)^\frac{3}{2}

We can factor out the 4a:

\displaystyle =(4a)^\frac{3}{2}(h+a)^\frac{3}{2}

Simplify:

\displaystyle =8a^\frac{3}{2}(h+a)^\frac{3}{2}

For the second term, we have:

\displaystyle (4a^2)^\frac{3}{2}

Simplify:

\displaystyle =(2a)^3

Hence:

\displaystyle =8a^3

Thus, our equation becomes:

\displaystyle S=\frac{\pi}{3a}\Big[8a^\frac{3}{2}(h+a)^\frac{3}{2}-8a^3\Big]

We can factor out an 8a^(3/2). Hence:

\displaystyle S=\frac{\pi}{3a}(8a^\frac{3}{2})\Big[(h+a)^\frac{3}{2}-a^\frac{3}{2}\Big]

Simplify:

\displaystyle S=\frac{8\pi}{3}\sqrt{a}\Big[(h+a)^\frac{3}{2}-a^\frac{3}{2}\Big]

Hence, we have verified the surface area generated by the function.

Part B)

We have:

y^2=36x

We can rewrite this as:

y^2=4(9)x

Hence, a=9.

The surface area is 1000. So, S=1000.

Therefore, with our equation:

\displaystyle S=\frac{8\pi}{3}\sqrt{a}\Big[(h+a)^\frac{3}{2}-a^\frac{3}{2}\Big]

We can write:

\displaystyle 1000=\frac{8\pi}{3}\sqrt{9}\Big[(h+9)^\frac{3}{2}-9^\frac{3}{2}\Big]

Solve for h. Simplify:

\displaystyle 1000=8\pi\Big[(h+9)^\frac{3}{2}-27\Big]

Divide both sides by 8π:

\displaystyle \frac{125}{\pi}=(h+9)^\frac{3}{2}-27

Isolate term:

\displaystyle \frac{125}{\pi}+27=(h+9)^\frac{3}{2}

Raise both sides to 2/3:

\displaystyle \Big(\frac{125}{\pi}+27\Big)^\frac{2}{3}=h+9

Hence, the value of h is:

\displaystyle h=\Big(\frac{125}{\pi}+27\Big)^\frac{2}{3}-9\approx7.4614

8 0
2 years ago
Read 2 more answers
What is the surface area of a box with a length of 6 ft, a width of 3 ft, and a height of 2½ ft?
NikAS [45]

Answer:

Step-by-step explanation:

Remark

The surface area is the area of all six sides when the object is a box.

Formula

SA = 2*L*w + 2*L*h + 2*w*h

Givens

L = 6 ft

w= 3 ft

h = 2.5 feet

Substitute and Solution

SA = 2*6*3 + 2*6*2.5 + 2*3*2.5

SA = 36 + 30 + 15

SA = 81

4 0
2 years ago
If the volume of a cube is 2197cm3, find the height of the cube​
stealth61 [152]
Since it’s a cube all sides are equal

6 0
3 years ago
Read 2 more answers
Find the value of y
Viktor [21]

Answer:

27

Step-by-step explanation:

6 0
2 years ago
Other questions:
  • A manufacturer is designing a flashlight. For the flashlight to emit a focused beam, the bulb needs to be on the central axis of
    11·1 answer
  • How do I convert 50% to an improper fraction?
    12·1 answer
  • What is 1 to the 2nd power?
    6·2 answers
  • Well I need help please
    7·1 answer
  • Solve log (4x+5)=2. Round to the nearest thousandth if necessary.
    7·2 answers
  • What is the volume of a sphere with a diameter of 9.3 m, rounded to the nearest
    12·1 answer
  • -63<br> —— = -7 what’s the error <br> -9
    5·2 answers
  • In an arithmetic sequence a17=-40 and a28=-73 write the first 5 terms
    7·1 answer
  • 65% of the workers are women. If 980 people work for the company who
    15·1 answer
  • Using the equation y^2=-5/4(x-2), find the equation of the directrix
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!